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Figure 1: Self-healing ProtoStar multicomputer
architecture, synthesized by our STAArchitecture 

software, implemented with optical interconnect and 
a cylindrical package.

Figure 2: K-cube-connected edge exemplifying 
how our STAArchitecture software synthesizes a 
minimum-cost architecture with maximum fault 

tolerance and optimal performability.
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This revision reflects clarifications and corrections to versions issued 9, 12, and 30-Jan-2000.

Accompanying software. This report is accompanied by version 0.5 of STAArchitecture, a 32-bit Win-
dows program described in Section 4. For operational and licensing information about STAArchitecture,
refer to the readme.txt bundled with the online or CD ROM distribution kit. Also included in the distribu-
tion kit: astronomical-proportions.xls, a Microsoft Excel 97 spreadsheet that contains many of the calcula-
tions and charts featured herein. "STAArchitecture" and "Astronomical Proportions" are trademarks of
The Right Stuff of Tahoe, Incorporated.a
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1.  Executive Summary

Imagine interstellar missions lasting five times your lifespan … Our spacecraft orbits Alpha Centauri,
decides which moon of the second planet to explore, plans how to sample soil from that moon’s craters,
and lands micro-rovers that burrow beneath the craters’ surface. Figure 3 illustrates how our work dove-
tails with two research areas deemed by NASA as critical to such interstellar missions. From the standpoint
of self-healing architectures and algorithms, this report describes opportunities and challenges that are key
to launching, within the next forty years, spacecraft that are truly autonomous.

This report is news that you can use. Apart from Sections 4.3 through 4.5, we have written for readers
versed in one or more technical disciplines, but who are not necessarily specialists in adaptive and fault tol-
erant systems. Sections 2 through 4 flesh out the Phase I goals, findings, and conclusions synopsized by
Table 1. In Section 4 we apply our core competence of analytic modeling, along with our background in
experimental and simulated systems, to a problem domain that is both broad (Sections 2 and 3) and deep.
Among our major contributions we feature the bibliography of Appendix A, and highly recommend the
170 references therein to investigators in search of greater breadth and depth. Stemming from our Phase I
work, for example, our citations include

• a journal article submitted ([LaForge 1999 Trans. Reliability])

• three peer-reviewed conference papers accepted for publication ([LaForge and Korver 2000
MTAD] , [LaForge 2000 Starship Avionics], [LaForge and Korver 2000 Graph Fault Tolerance])

• a NASA technical report update ([LaForge 1999 JPL D-16485])

with the latter two contributing theorems whose consequences for hypercube-related structures are both
encouraging and provocative (cf. Sections 4.3 through 4.5). However, self-healing autonomous spacecraft
will not just magically sprout from evolutionary improvements in earth-based software and hardware [Gol-
din et al 1998]. Using this report as a springboard, Section 5 projects avenues for serious development of
self-healing autonomous starship multicomputers, such as that exemplified in Figure 1. Whether or not you
have a penchant for mathematical rigor, we hope that you find this report to be informative, interesting,
and even a touch inspirational. 

Figure 3: Enablers and neighboring destinations for interstellar missions. Left side from [Gavit 1999].
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2.  Starships Require Revolutionary Autonomy, Survivability, and Performance

Perhaps more than any other factor, distance provides the impetus for spacecraft autonomy ([Goldsmith
1999], Chap. 9). Our knowledge of a spacecraft’s environment diminishes with increasing distance from
earth (but this makes the mission more interesting). Distance dictates communication latency: to arrive at a
probe near Pluto,1 for example, a radio signal travels for more than five hours – entirely too long for earth-
bound controllers to tactically adapt the spacecraft to changes in environment.

Distance also dominates properties of self-healing avionics and software. Most prominently, the time for a
probe to complete its mission is bounded from below by the length of the journey divided by the speed pro-
vided by our best propulsion. For either hardware or software, the cumulative probability of failure
increases with the time of operation.2 Mission duration is therefore a major challenge for continuously
available avionics and software. These observations underscore why revolutions in self-healing autonomy
are most needed, and why they are most likely to be devised, for long distance missions of long duration.

Refer to Table 2. As a framework for the goals, requirements, and properties presented in Section 3, it is
worthwhile to consider three interstellar missions envisioned for the next ten to forty years:3

i) The Interstellar Probe ("JPL ISP") being developed at the Jet Propulsion Laboratory [Gavit 1999]
ii) The Interstellar Precursor Mission ("McNutt IPM") proposed by Ralph McNutt at Johns Hopkins

University [McNutt et al 1997], [McNutt 1999]
iii) Santa Maria, a mission of our own conception [LaForge et al 1999]

Details Goal Thematic Highlights

Sec. 2
Profile missions requiring 
revolutionary survivabil-

ity and performance.

Substantive answers to NASA’s Grand Challenges [NIAC 1999 Scope], 
particularly exploration beyond the solar system, require unmanned 

spacecraft that can operate between one century and one millennium, 
intelligently and without earth-based tactical control.

Sec. 3

Characterize computa-
tional avionics and soft-

ware that will enable 
missions profiled in 2.

Key to success: hardware/software co-design capable of maintaining low-
level health of computational resources, while simultaneously facilitating 
high-level adaptation, over time and in the presence of a wide range of 

onboard and external conditions.

Sec. 4
Advance state-of-the-art 
for mission-critical archi-
tectures and algorithms.

Point-to-point interconnection is best bet for maintaining a working quo-
rum, excising problematic subsystems. In a ratioed asymptotic sense, 

clique-based cubes are superior to traditional hypercubes.

Sec. 4

Demonstrate, communi-
cate, and automate appli-

cation of advances in
the state-of-the-art

Reflecting breakthroughs in the theory of emerging properties, new 
design tools are essential to self-healing autonomy. STAArchitecture, a 

CAD program of our own creation, exemplifies such a tool in the domain 
of graph-theoretic interconnection.

Sec. 3

Table 3

Sec. 5

Survey and forecast tech-
nologies appropriate for 
self-healing autonomy.

Akin to the International Technology Roadmap for Semiconductors [SRC 
1998], [Geppert 1999], self-healing autonomy is well-served by a 

Starchart that lists, in an integrated fashion, known, desired, and possible 
characteristics of materials, circuits, manufacturing, and software engi-

neering. This report serves to begin such a Starchart.

Table 1: Framework established by Phase I of this work.

1. Pluto-Kuiper Express will explore this region, 40 Astronomical Units (AU) from earth [Alkalai and Tai 1998].
2.  Cumulative failure probability equals one minus the reliability ([Siewiorek and Swarz 1982] p. 31).
3. Many of our assumptions and results apply as well to missions within the solar system ([Cassanova 1999] p. 7).
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In addition to distance and mission duration, Table 2 lists three quantities that are directly pertinent to our
research. In rough order of importance, these are payload mass, average available power, and communica-
tion capacity. By way of reference, each of the two Voyager spacecraft has a mass of 800 kilograms, gen-
erates 470 watts of nominal power (degraded to 340 watts at present), and downlinks data to Deep Space
Network (DSN) 34 meter antennae at 160 bps [Wade 1999], [JPL 1999 Voyager]. [Guiar 1998] details
facts and figures about the planned Europa Orbiter and Pluto-Kuiper Express.

Santa Maria is qualitatively different from either the JPL ISP or the McNutt IPM. Refer to Figure 4. With
a specific impulse (Isp) of between 1950 and 3150 seconds, the Deep Space 1 (DS1) ion engine represents
the state-of-the-art in propulsive efficiency.4 By contrast, conversations with our fellow NIAC researchers
([Kammash 1999], [LaPointe 1999], [Slough 1999]) suggest that order-of-magnitude advances in propul-

Mission →→
Characteristic ↓↓

Jet Propulsion Labora-
tory Interstellar Probe 
(JPL ISP) [Gavit 1999]

Johns Hopkins University
 (McNutt IPM) [McNutt et 

al 1997], [McNutt 1999]

The Right Stuff
of Tahoe: Santa Maria
[LaForge et al 1999]

Destination nose of heliosphere beyond nose of heliosphere Alpha Centauri

Distance (AU) 200 1000 278256

Trajectory ecliptic,
with solar swingby

ecliptic,
 with Jovian / solar swingby direct

Propulsion solar sail Orion class nuclear fusion/antimatter, Isp > 105 sec

Launch
(Gregorian date) 2010 August 2, 2022

Duration (years) 15 50 between 100 and 600

Payload mass (kg) 100 (science instr: 25) 50 (science instr: 10) 1000 (science instr: 250)

Power
(continuous, watts) 20 15 100

Downlink capacity 
bps (bits per sec-
ond) at 100 AU

500 1000 10000

Table 2: Baseline missions driving requirements for autonomy, survivability, and performance.

Figure 4: Deep Space 1 ion engine Isp as measured at the Jet Propulsion Laboratory [Anderson 1999].
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sion may well place Santa Maria within the realm of what we can achieve, within the next quarter century
[Millis 1997].5 Making use of the rocket equation [Larson and Wertz 1995], Figure 5 plots tradeoffs
among Santa Maria mission duration, initial mass, and propulsive efficiency.6 Not shown is the consider-
able reduction in resources required for a fly-by of (as opposed to orbital insertion around) the Alpha Cen-
tauri ternary ([Goldsmith 1999], p. 168).7 However, even with a fly-by that uses the most efficient
propulsion forecasted, the initial mass of Santa Maria is likely to exceed that of several Saturn/Apollo
vehicles.8 In light of this, it makes sense to assume that Santa Maria will be assembled and launched from
a space-born platform, such as the International Space Station or an earth-moon Lagrange point.9 The
attendant logistics point to a need for revolutionary new levels of modularity in avionics components.

We conclude this section by addressing a question posed by Professor Webster Cash ([NIAC 1999
Agenda], [Cash 1999]). Concerning the timing of a launch to Alpha Centauri within the next four decades:

Would later generations not send starships, featuring more capable
propulsive systems, that would overtake Santa Maria?

Although the scenario above is certainly possible, the history of space exploration suggests otherwise. For
example, the last people to reach the moon left its surface on 14-Dec-1972 [Dumullin 1999]; in spite of
technological advances over the last twenty-eight years, however, we have yet to send another person on a
lunar mission. As a second example, since launching Voyager 1 and Voyager 2 in late summer of 1977
[JPL 1999 Voyager], we have yet to send another probe to the edge of the solar system. By maintaining a

4. Other aspects of the DS1 ion engine are summarized in [Braham 1999].

5. McNutt does not believe we can achieve Isp’s of 105 seconds within the next forty years ([McNutt 1999] p. 6).

6. Proposed launch date: 530th anniversary of Christopher Columbus sailing from Palos, Spain [Pickering 1999].
7. Standard texts treat Alpha Centauri as a binary of stars of type G2 V and K0 V [Kaufmann and Freedman 1999].
8. Approximate mass of a fully loaded three-stage Saturn V with Apollo payload: 2.9 × 106 kg [Richard 1999].
9. Assembly of Santa Maria at the International Space Station would bolster synergism between manned and

unmanned programs [Oberg 1998]. JPL proposes an earth-based Delta II rocket launch of ISP [Gavit 1999].

Figure 5: Revolutionary breakthroughs in propulsion will make it feasible to launch a probe to Alpha 
Centauri within the next twenty to forty years. However, even with a hundredfold improvement over the 

efficiency of the Deep Space 1 ion engine, the journey will take more than a century to complete. 

Benefits of Advances in Propulsion

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

100 200 300 400 500 600

Time to Orbital Rendezvous with Alpha Centauri (years)

In
it

ia
l M

as
s 

(k
ilo

g
ra

m
s)

 Isp =  5.00E+04

 Isp =  1.00E+05

 Isp =  1.00E+06

Application of the
nonrelativistic rocket
equation:

payload = 103 kg
engine = 104 kg

Constant accelera-
tion/decceleration, 

symmetric about half-
way point.

Structure and tank 
overhead = 3% of 

propellant required to 
deliver engine and 

payload; incremental 
shedding of tankage. 

mp mf e

∆V
g I⋅ sp

-------------

1–
 
 
 
 

=



3. Genesis of a Starchart for Software and Avionics Enabling Characteristics at a Glance

Self-Healing Autonomous Spacecraft 7 NIAC Phase I Report, Revision 28-Feb-2000

wait-and-see strategy for improvements in propulsion, moreover, we might never launch a mission to
Alpha Centauri. Consistent with NIAC objectives [NIAC 1999 Scope], this report presumes, and further-
more advocates, charting a course for Alpha Centauri at the earliest feasible opportunity. The remaining
sections chart a course of feasible opportunities for self-healing computational avionics and software.
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Priorities for Success: ★★★★ Stars of the Main Sequence

Section 3 at a Glance

In-depth Research, Phase I:

STAArchitecture CAD Tool, Phase I:
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3.1 Payload: roving astronomer-on-a-computer. ★★★★

3.2 Avionics targeted to support software that can learn and adapt on its own,
occasionally guided via communication (albeit highly latent) with earth.

★★★★ ★★★★

3.3 More’s Law:12 Autonomous Intelligence (AI) demands more computing power. ★★★★

3.4
Experimentally verified models quantify relations among processing power, low-

level tasks, and AI. 1015 ops/sec-kg provisional performance objective.
★★★★

3.5 Four domains of knowledge and control: a) scientific; b) communication;
c) navigation; d) self-healing starship control and maintenance.

★★★★

3.6 Tolerance to a constant proportion of faulty computational nodes. ★★★★

3.7 Self-configuring, uniform computational nodes maintain connectivity
among healthy nodes, disconnect healthy from faulty nodes. ★★★★

3.8 Computational nodes identify faults via MTAD: mutual test and diagnosis. ★★★★

3.9 Computational nodes govern their own switches for connecting to other nodes.★★★★ ★★★★

3.10 Switch technologies biased against stuck-closed faults. ★★★★

3.11 Computational nodes connected by three-dimensional technology that mitigates, in 
order of priority: a) short circuits, b) mass, and c) signal delay. ★★★★

3.12 Shielding and hardening to 104 Mrad(Si) ★★★★

3.13 Reuse only components that match design requirements. ★★★★ ★★★★

3.14 Teams embrace and exploit a new generation of CAD tools and processes. ★★★★ ★★★★

3.15 Avionics and software designed for high yield as well as high reliability. ★★★★ ★★★★ ★★★★

3.16 Instrument and measure software failures and faults
at quantifiable levels commensurate with physical measurements of avionics.

★★★★ ★★★★

3.17 Administrators and managers actively promote, and participate in, development. ★★★★

Table 3: Starchart genesis: avionics and software co-design, enabling characteristics at a glance. This 
table, along with the bulk of Sections 2, 3, and 5, will be published in [LaForge 2000 Starship Avionics].

Section 4 of this report

Section 4 of this report
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3.  Starchart Genesis: Enabling Characteristics of Starship Software and Avionics

From the perspective of architectures and algorithms, Table 3 proffers priorities about what we should
build and, furthermore, how we should go about building it. Though by no means exhaustive, characteris-
tics 3.1 through 3.17 embrace the space of software/hardware co-design for self-healing autonomous star-
ships. With respect to this design space, the descriptions, examples, and references cited in this section
establish a central role for self-healing architectures and algorithms (requirements 3.6 through 3.9,
Section 4) as well as related tools (requirement3.14, Section 4) for computer aided design (CAD). We
begin with a position put forth by Dr. Daniel Dvorak and Dr. Richard Doyle at JPL [Dvorak and Doyle
1998], and by Professor Sandra M. Faber of the University of California at Santa Cruz [Milky Way 1999]:

3.1  Starship payloads will be autonomous, intelligent, robots: roving astronomers-on-a-computer.10

As basic as 3.1 may be, it sets the stage for the computational tasks that avionics and software must per-
form. While press reports may have exaggerated the success of the Deep Space 1 Remote Agent ([JPL
DS1 Press Release], [Foust 1999]), real starship autonomy is within the twenty-year horizon of software
engineering. JPL's X2000 Mission Data System is being built of Goal Achieving Modules (GAMS), an
evolutionary successor to the Remote Agent [Dvorak 1998]. By any stretch of the imagination, therefore,
starship avionics must provide the raw computational horsepower for successors to the Remote Agent.

Software is the only thing that we can add to a payload, once our starship has ventured into deep space;
software provides a final degree of freedom in starship design and implementation. From this simple
observation we see that a very real opportunity (and perhaps the best opportunity) for maximizing auton-
omy is to ensure the starship software does not spend the time to destination spinning in an idle loop, but
rather "grows up", in a fashion not unlike the way hominoids mature to adulthood:

3.2  Starship avionics will support software that can learn and adapt on its own,
occasionally guided via communication (albeit highly latent) with earth.

As with other high-end applications, More's Law applies:

3.3   Autonomous intelligence (AI)11 will always demand more computing power,
more memory, and more communications capacity.12

For any given level of AI, we can ask how much computing power will be needed to satisfy
requirements3.2 and 3.3. The open-ended nature of this requirement (what does it mean for software to
learn and adapt on its own?) renders such an assessment difficult. Refer to Figure 6. Our Phase I technical
proposal targeted a machine capable of retiring 1015 operations per second [LaForge 1999 NIAC Phase I
Proposal], and this appears to be achievable. Largely due to the dearth of models and experiments for char-
acterizing AI workloads [Dvorak 1999], however, we really do not know if such performance is too little,
too much, or about right. Section 5 identifies a number of tasks critical to workload characterization, at a
level of fidelity that will facilitate the design of self-healing architectures and algorithms. In the interim:

3.4   Successful design of self-healing autonomy will require experimentally verified
 models that quantify the relations among processing power, low-level tasks, and AI.13

1015 operations per second per kilogram is a provisional performance objective.

10. Even optimists doubt the feasibility of human interstellar exploration within the next forty years [Nordley 1998].
11. AI = autonomous (not artificial) intelligence: intentional coining of new words for an old, artificial acronym.
12. Requirement 3.3 articulates More’s Law. Moore's Law states that our capacity for packing circuit devices or
information storage increases exponentially (alternatively, the price per circuit function or bit of storage decreases
exponentially), at between 2% and 4% per month [Schaller 1997], [Economist 1997], [Hamilton 1999].
13. One possible application for experimentally quantifying such a workload: IVHM, an AI system for self-diagnosis
of remote agents, spaceliners, and rotorcraft; under development at NASA Ames Research Center [Norvig 1999].
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Notwithstanding our inability to quantify the computational demands imposed by an autonomously intelli-
gent workload, we can qualify some of the salient characteristics of such a system. For example, what kind
of knowledge will our starship need to possess, and what kinds of things will it have to do in response to its
environment? Broadly speaking:

3.5  The combination of knowledge and control of actions (based on knowledge and input) can be divided 
into four domains: a) scientific; b) communication; c) navigation;14 d) starship control and mainte-
nance, with the latter including self-healing architectures and algorithms for computational resources.

From a strategic perspective, science is the raison d’être for a starship: the navigation, communication, and
instrument control serve as means for conducting and reporting the outcome of science experiments. From
a tactical point of view, the order of priority is reversed: the starship’s computational health is necessary to
successfully determine location, trajectory, and control; accurate navigation is necessary to positioning
spacecraft to carry out science experiments; the value of these experiments hinges on the starship’s ability
to communicate their outcomes to us. While our Phase I effort focuses on 3.5d, a comprehensive design of
hardware and software will take full account of 3.5a, b, and c. These domains are traditionally addressed
by formulating specifications for onboard instrumentation. Refer to Table 4. While both the JPL ISP and
the McNutt IPM feature manifests for onboard scientific instruments ([Gavit 1999], [McNutt 1999]), nei-
ther of these missions appears to have developed an analogous list for navigation and communication.15

The genesis of starship instrumentation may well result from a combination of evolution and revolution.
For example, new discoveries of planets outside the solar system,16 perhaps with the aid of x-ray interfer-
ometers like that proposed by Professor Webster Cash [Cash 1999 X-File], could shift our investigative
priorities to questions about astrobiology [Morrison and Schmidt 1999]. In the case of Santa Maria, it is
beyond our Phase I scope to draft a list of instruments – scientific, navigational, communication, or other-
wise. However, Section 5 identifies collaborative tasks for composing, at an operational level of fidelity, a
manifest for the Santa Maria payload. We anticipate a diverse yet coordinated suite of instruments, reflect-
ing contributions from specialists in academia, industry, and government.

Figure 6: Trends in high-end processing power. Adapted from [Szymanski and Supmaonchai 1996].

14. We include control of propulsive actuators as falling properly within the domain of navigation.
15. Although absent such a list for navigation and communication, a substantial amount of the McNutt IPM Phase I
report is devoted to these aspects ([McNutt 1999], Sec. 2.6, 2.8).
16. Astronomers believe they have discovered 28 planets outside of the solar system; with masses on a Jovian scale,
some of these may be brown dwarfs [Recer 1999], [Butler et al 1999].
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Despite gaps in our understanding of the implications of the more strategic domains of 3.5, we can charac-
terize many facets of computational avionics and software for interstellar missions. In particular, hardware
dependability is at least as important as computational power, and in this respect we can bracket both what
is required and what is possible. Contemporary spacecraft avionics are specified to tolerate one fault, per-
haps two, and this limited tolerance is mandated without regard to either the component failure probability
or the number of components [Barry 1998], [Guiar 1998]. On the other hand, estimates for the mean time
to failure (MTTF) of discrete components range from 100 to 1000 years [Avizienis 1999], [Virgras], [Har-
ris]. In light of this, and taking into account burgeoning levels of system complexity:

3.6  Self-healing autonomous starships will tolerate a constant proportion of faulty computational nodes.17

Reflecting the needs generated by century-long interstellar missions, Professor Algirdas Avizienis of the
University of California at Los Angeles has outlined both the past and the future of fault tolerant computa-
tional avionics [Avizienis 1999]. As to the latter, starships face three categories of threats: i) latent design
faults that remain onboard; ii) components wearing out; iii) transient faults, single or burst. To this list we
would like to add iv) permanent faults that arise during the mission, regardless of source (e.g., radiation,
thermal cycling, metal migration, latchup)18.

JPL ISP  Science instrument McNutt IPM

Yes Magnetometer 3.0 kg 0.5 watts

Yes Plasma wave / radio detector
1.5 kg 2.5 watts

Yes Dust sensor

Yes Detector for cosmic rays, hydrogen, helium, 
electrons and positrons

1.0 kg 1.5 wattsYes Galactic cosmic ray composition analyzer

Yes Solar wind / interstellar plasma / electron sensor

Yes Pickup and interstellar ion composition analyzer

Yes Interstellar neutrals detector

2.0 kg 2.0 wattsYes Suprathermal ion / electron sensor

Yes Energetic neutral atom imager

Yes Infrared imager 1.5 kg 1.5 watts

Yes Ultraviolet photometer No

No Lyman-α imager 1.0 kg 2.0 watts

25 kg 20 watts All Science Instruments 10 kg 10 watts

Table 4: Payload manifests instrumental to starship science experiments [Gavit 1999], [McNutt 1999].

17. This stands in contrast to contemporary missions with requirements for tolerance to one or (in the case of STS
launches) two faults [Guiar 1998]. Proportions can be estimated by integrating the failure probability density over
mission duration. For example, assuming that every part fails according to a negative exponential distribution with
identical failure rates then, for a mission duration equal to the MTTF, 1/e ≅ 36% of the components will have failed.
18. Category (iv) is in fact mentioned elsewhere in [Avizienis 1999], apart from (i) through (iii) . Category (iv) over-
laps with, but is not a necessary consequence of, (iii) . For example, radiation or shock induced failure is arguably not
the same as a component "wearing out".
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The immune system paradigm proposed by [Avizienis 1999], and independently set forth by SoHaR Presi-
dent Myron Hecht [LaForge et al 1999], appears to be a promising approach for addressing threats (i)
through (iv). With all respect, however, the DiSTARS implementation advocated by Avizienis is not the
most prudent use of redundancy. In particular, static, hardware-level distinction of computational nodes (as
master, controlling, or defensive) is contrary to much of what we have learned in the three decades since
the JPL STAR computer was designed [Avizienis 1967], [Hecht and Fiorentino 1988].

More precisely, dedicated sparing (such as that suggested for DiSTARS) tends to be more costly than local
sparing, but local sparing is generally more costly than uniform sparing. To cite a well-understood exam-
ple: at constant proportion of failed elements, the (unfortunately) prevalent method of using dedicated
spare rows and columns to boost the dependability of arrays (be they memory, register files, or cache
lookup tables) requires redundancy that is exponential in the square root of the size of the array [LaForge
1999 Trans. Reliability]. Refer to Figures 7 and 8. Under the same probabilistic fault model, local sparing
of array elements (known as cross-strapping by spacecraft designers at JPL, and depicted in Figure 2.7.1
of [McNutt 1999]) delivers the same dependability, but in this case the redundancy is logarithmic in the
array size [LaForge 1999 Trans. Computers].19 Under a VLSI layout model, moreover, uniform sparing
costs less than either of these two approaches, with log log redundancy for two-dimensional arrays and
constant redundancy and wirelength in the one-dimensional case [Leighton and Leiserson 1985].

19. The logarithmic cost of local sparing is a fundamental analytic result, and perhaps warrants spelling out in detail.
Suppose that our nominal quorum requires n working components, that components fail with Bernoulli probability p,
and that we replace each component by a block containing h copies of the respective component (h is the discrete
ratioed component redundancy). Cross-strap the components of any given block with all of the components in each
adjacent block, where block adjacency in the redundant architecture is isomorphic to component adjacency in the

nominal architecture. Denote by  our required probability that each of the n nominal components is rep-
resented by a working component (Y is the configuration coverage). Let c be any real value greater than 1 and less
than Y 1 /n. The minimum redundancy h that meets our mission requirements equals the least integer no less than hreal:

 , which converges quickly to the righthand side.

The above expression was first published in [LaForge 1994], with proof relying on bounded Taylor series. Indepen-
dently, [Leighton and Leiserson 1985] note that the order of magnitude is logarithmic in n. [LaForge 1999 Trans.
Computers] generalizes to a multivariate fault model that includes switches stuck open or closed.
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redundancy? Though
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cesses for electronics
design.
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More generally, by relaxing constraints on the shape of our target architecture (e.g., not insisting on an
array), while at the same time maintaining uniformity among computational nodes, we can achieve highly
survivable systems whose redundancy is (a best possible) constant. For illustration refer to
Figures 1 and 2. Reflecting this, and by contrast to recent FAT-tree experiments with the Teramac super-
computer [Clark 1998], [Culbertson et al 1997], [Culbertson et al 1996], Section 5 outlines tasks for creat-
ing a family of optimally redundant starship multi-computer whose design devolves from a simple
requirement:

3.7 Computational starship avionics will consist of self-configuring, uniform computational nodes that
maintain connectivity among healthy nodes, and that disconnect healthy from faulty nodes.

Such a collection of healthy nodes constitutes a quorum.20 Since cooperative computation requires that
healthy nodes communicate (and furthermore that they restrict communication with faulty nodes), 3.7 is a
fundamental criterion for self-healing autonomy. We may (and generally will) augment 3.7 with perfor-
mance requirements for minimizing latency or maximizing throughput. Resurgent interest in combining
dependability with computational speed has sparked a relatively new area of research: performability
[Haverkort and Niemegeers 1996]. Section 4 explains our Phase I contributions to performability theory,
with novel emphasis on structure instead of traditional Markov chains [Nabli and Sericola 1996].

Consistent with requirements set forth by [Avizienis 1999]:

3.8  Computational nodes aboard starships will identify faults via MTAD: mutual test and diagnosis.

The need for distributed MTAD algorithms follows by observing that every node is subject to failure.
Figure 9 depicts the relation between 3.7 and 3.8. As is the case with requirement 3.7, MTAD is essential
to self-healing autonomy [LaForge and Korver 2000 MTAD]. However, MTAD represents a radical depar-
ture from traditional, centralized spacecraft fault protection ([Chau 1998 PDR], [LaForge 1999 JPL D-
16485] pp. 58-70), and considerable experimental work remains to be done in order to best implement
MTAD. In [LaForge and Korver 2000 MTAD] we describe how to go about performing these experiments.

Figure 8: Optimal number of cross-strapped spares to build, as a function of quorum survivability Y.

20. This use of quorum appears to have originated with research at Bell Laboratories [Moore and Shannon 1956].
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Requirements 3.7 and 3.8 speak to properties for switching and interconnect:

3.9  Computational nodes aboard a starship will govern their own switches for connecting to other nodes.

3.10  Starship avionics will mitigate against switches that are stuck closed.

3.11  Computational nodes aboard a starship will be connected by three-dimensional technology that
mitigates, in order of priority: a) short circuits, b) mass, and c) signal delay. 

Let us unfold the case for 3.9, 3.10, and 3.11. Under worst-case or probabilistic fault models, the likelihood
that healthy nodes will form a quorum is maximized by excluding faulty processors from the diagnosis or
configuration algorithm [Somani and Agarwal 1992], [LaForge et al 1993], [Das et al 1993]. Further, given
that each healthy node has knowledge of faults among the candidate nodes to which it might connect, a
simple, distributed, greedy algorithm ("connect to only healthy nodes") suffices to form a quorum, as long
as a quorum is feasible [LaForge and Korver 2000 MTAD]. In light of 3.8, the essential conditions for
self-organizing quorums reduce to 3.7a) ensuring sufficient connectivity in a point-to-point architecture
and 3.7b) having switching and interconnect that faithfully implements this architecture. That is, 3.9 is not
only necessary, but, to the extent that 3.7a and 3.7b are satisfied, it is sufficient. Subrequirement 3.7a is
central to our in-depth research, and is explained in Section 4. Analytic results reveal that switches stuck
closed (but not switches stuck open) increase the redundancy (as well as the length of the longest wire) by
orders of magnitude [LaForge 1999 Trans. Computers]. Further, requirement 3.9 draws a node’s switches
into its own fault containment region, in which case a single switch stuck closed threatens to inhibit exclu-
sion of a faulty node from the quorum, or to reduce the quorum count by at least one (otherwise) healthy
node. The ensemble of these observations provides motivation for requirement 3.10: we can tolerate
switches that are stuck closed, but are well-served by technologies that hedge against such faults.

As Figure 10 suggests, requirement 3.11a follows by reasoning similar to that for 3.10. Moreover, and
depending on our survivability confidence, the number of neighbors of each node will grow with the nom-
inal number n of nodes. The attendant cost of layout (mass and wirelength) dominates the performance of
chip and board-level electronics [Pedder 1993], [Lee and Cong 1997], [Geppert 1998]. However, three-
dimensional processes, especially free-space interconnects ([Carson 1996], [Ishikawa and McArdle 1998],
[Guilfoyle et al 1998]), ameliorate the tyranny of planar layout. For example, our best planar layouts for
n-node binary hypercubes yield O(n2) area and O(n) wirelength,21 while locally spared hypercubes have
area O(n2 log n) and wirelength O(n log n).22 In a metal-oxide-semiconductor (MOS) process, signal delay
increases as the square of the longest wire. Hence the delay of the best planar layout for binary hypercubes
scales as O(n4) in the absence of faults, O(n4 log2 n) for hypercubes that are locally spared. By contrast, a
free-space multicomputer, such as that depicted in Figure 1, reduces to O(n) the hypercube layout area
(O(n log n) with locally spared redundancy), and diminishes internodal signal delay to negligible levels.

Figure 9: Diagnosis and configuration for self-healing autonomy: architectures versus algorithms.

21. O(g(n)) denotes the set of real-valued functions no greater than c⋅g(n), for real n > k and constants c, k.
22. Constructive upper bounds make use of the Strong Separator Theorem ([Ullman 1984] pp. 98-100), and are expli-
cated in [LaForge 1994]. Unlike the case with, for example, binary (H-)trees, we do not have a matching lower
bound, and so do not know how close to optimal are our upper bounds for hypercube layout and wirelength.
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We conclude our focus on circuit technology by approximating conditions for radiation survivability:

3.12  The combination of starship skin, shield, and avionics radiation hardening will be capable of with-
standing cumulative exposures of 108 to 1010 rad(Si), as measured from the exterior of the skin.23

Dr. Steven Howe of the Los Alamos National Laboratory estimates that a starship will be exposed to radi-
ation similar to that encountered in the solar system [Nordley 1998]. That said, the intensity and taxonomy
of radiation varies considerably throughout the solar system. For example, vehicles in earth orbits below
104 kilometers are subjected to substantial numbers of protons, as well as the electrons that dominate
higher orbits and escape trajectories. Shielding is much less effective against these high energy (up to 500
MeV) protons than with the relatively low energy (up to 7 MeV) electrons.24 Further, when a vehicle
boosts from low level to medium level orbits (say, from 800 kilometers to 1100 kilometers in a circular tra-
jectory inclined 90° to the equator), the radiation intensity increases by threefold. Even with substantial
shielding, the Europa Orbiter space probe avionics must tolerate Jovian doses of 1 Mrad(Si) [Guiar 1998].

Above the earth’s radiation belts, typical background rates are on the order of 1 rad(Si)/second [Bendetto
1998]. To obtain 3.12 we have multiplied the latter value by the range of mission durations (15 to 1000
years, Table 2). However, this estimate does not take into account Linear Energy Transfers (LETs) that
induce latchup and upset, nor is it fully cognizant of high density fluxes, such as those likely to be encoun-
tered when exploring near other planets [Lockheed Martin 1999]. Moreover, a substantial amount of work
remains to gauge tradeoffs among shielding, process-level hardening, and architectural fault tolerance,
where for that latter we are more interested in bit error rates than in radiation dosage. As mentioned in our
Phase I proposal ([LaForge 1999 NIAC Phase I Proposal] item viii, p. 7), such a tradeoff study falls within
the scope of Phase II. Section 5 includes this task in the context of enhancements to STAArchitecture.

Requirements 3.6 through 3.12 devolve from a perspective based on a spectrum of models, theories, ana-
lytic results, and technology. To successfully realize self-healing architectures and algorithms within the
next ten to forty years, we must embody this spectrum in the form of dependable, convenient software for
computer aided design (CAD). In addition, we must put into place new engineering, manufacturing, and
project management practices and processes that make best use of CAD tools, as well as the knowledge
these tools embody. The remainder of this section addresses these issues and how they interrelate.

Recalling the immune system paradigm of Avizienis and Hecht, low-level fault tolerance for starship avi-
onics and software is analogous to our own cellular-level defense mechanisms. What would (and does)
happen when these low-level mechanisms fail us? Although our higher level functions may remain capable

Figure 10: Tolerance to physical defects will remain a challenge to starship avionics.

23. A measure of the radiant energy absorbed by semiconductors, 1 rad(Si) = 10-2 joules/kilogram [Bendetto 1998].
24. MeV = one million electron volts = 1.6 × 10-13 joules ([Kaufmann and Freedman 1999] p 122).
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of defending us against macro-level threats (such as rush-hour drivers), we run the risk of succumbing to a
common cold. Under conditions other than those for which they were originally designed, electronics and
software components rarely exhibit effective defenses [Zorian et al 1999], [Lowry 1998]. Unbridled reuse
of such components risks our system succumbing to the bit-level analogy of a common cold. This pertains
in particular to commercial, off-the-shelf components (COTS):

3.13  Unbridled reuse of software or hardware components, with or without wrappers,
impedes self-healing starship autonomy. This applies to COTS in particular.

[Avizienis 1997] articulates the case for considered, conservative application of COTS, a position ampli-
fied by York University Professor John McDermid [McDermid and Talbert 1998]:

… It would worry me if people in aerospace and nuclear power industries started using a COTS
solution without a clear demonstration that it fits all requirements … A major drawback to wrappers
… is that you may need to make them extremely complex to interact with the COTS component.

On the other hand, a component need not be of strictly commercial origin in order to be reused –
or misused. Perhaps the most dramatic misuse of previously constructed components is the explosive fail-
ure of Ariane 5. The fault that led to this failure was a consequence of plugging Ariane 4 flight software
into successor spacecraft, without taking full account of the behavior of the reused component viz. varia-
tions in launch sequence [Aviation Week 1997], [Jezequel and Meyer 1997]. Moreover, such malpractice
is not the exclusive province of the European Space Agency. We underscore this point with two of our own
NASA spacecraft design experiences – one software, one hardware.

Deep Space 1 inherited much of its software from Mars Pathfinder. Unlike Pathfinder, however, DS1 car-
ried no planetary rover. Recognizing the Ariane lesson, the DS1 flight software team attempted to excise
Pathfinder code pertaining to the Sojourner rover. However, removing the code rendered the DS1 flight
software incapable of being compiled and linked. DS1 and Pathfinder team members expended at least
three calendar weeks rectifying this problem. During that time, concurrent development on flight software
was substantially impeded [Eldred 1997], [Dornheim 1998]. This example exemplifies the cost of reuse:
usually hidden, frequently exorbitant.

As to hardware, the original X2000 design prescribed 1394 Firewire Bus controllers based on COTS intel-
lectual property ("IP", expressed in Verilog or VHDL design languages). Firewire is not designed to toler-
ate faulty nodes, and the boot sequence forbids cycles in the point-to-point connectivity. Project
requirements necessitated redundant wiring paths [Guiar 1998], thus introducing cycles. In consequence,
the 1394 IP was subjected to conditions other than those for which it was originally designed. Proper
accommodation of these conditions warranted modifying and testing the IP hardware. Instead, these modi-
fications were relegated to software. Although feasible to some extent, this approach exposed the avionics
to a number of debilitating low-level hardware faults [LaForge 1999 JPL D-16485].25 This example illus-
trates a common reluctance to "pry open the black box"; when such reluctance prevails, "ticking box" is
more apt. How we come to so readily accept such ticking boxes brings to light to a broader issue:

3.14  Starship design teams must embrace a new generation of CAD tools and attendant processes.

Reflecting on our examples with DiSTARS and X2000 Firewire, we should expect sub-optimal,
shoot-from-the-hip avionics and software whenever engineers are forced to produce designs outside of
their respective specialties. To some extent this a downside of contemporary emphasis on cheaper space-
craft [Woerner and Lehman 1995], [Broad 1999]. However, the point of the examples extends to all areas

25. Among other advances initially planned, 1394 Firewire was eventually descoped from X2000 [Chau 1999].37
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of software/hardware co-design. The cost of applying expert knowledge can be managed, and even
reduced, by employing processes that make judicious use of Computer Aided Design (CAD) [Bryant et al
1989]. Epitomizing this approach, the semiconductor industry has very effectively ameliorated the need for
large numbers of specialists by using CAD tools that, conveniently and dependably, incorporate the rigor
and knowledge of experts. In the domain of spacecraft avionics and software, the outlook for requirement
3.14 appears promising. Spearheading research in the integration of CAD tools and processes, for example,
NASA’s Langley Research Center has partnered with the University of Virginia in creating the Intelligent
Synthesis Environment (ISE) [Goldin et al 1998]. At the Jet Propulsion Laboratory, Mike Dickerson heads
the recently-formed Design Center, whose charter mirrors that of ISE [Chau 1999].

The promising outlook for 3.14 is bolstered by emerging levels of accessibility and capability for individ-
ual CAD tools. For example, automated theorem proving can be used to rigorously establish the correct-
ness of software. Once thought to be an academic exercise, this technique is now a practical reality
[Neumann 1996]. By way of illustration, the Automated Software Engineering group at NASA’s Ames
Research Center has created Amphion, a tool that mechanizes system-level verification in the face of
evolving changes in application software; Amphion has been applied to problems in fluid dynamics and
space shuttle navigation [Lowry 1998], and was used to find flaws in the DS1 Remote Agent not uncov-
ered through testing [Feather 1999]. At the Jet Propulsion Laboratory, researchers have repaired Cassini
flight software by employing SPIN, a verification tool akin to Amphion [Schneider 1999 E1].26

Recent advances in architectural CAD tools combine computer software with classical hardware domains,
such as power engineering. At Penn State University, for example, Mary Jane Irwin and Vijaykrishnan
Narayanan have developed a tool that enables the designer to predict electrical power consumption based
on software instruction mix [Irwin and Narayanan 1999]. At the level of system reliability, designers are
now able to conveniently manipulate graphical interfaces that detail the dynamics of architectures sub-
jected to faults. This capability is demonstrated by tools such as Relex®, developed by Relex Software
Corporation [Relex 1998], and MEADEP, developed by SoHaR [Tang et al 1998]. With respect to archi-
tectural requirements 3.6, 3.7, and 3.8, our own STAArchitecture program allows the user to synthesize
and analyze computational avionics. As described in Section 4, STAArchitecture maximizes the probabil-
ity of diagnosing and configuring a healthy quorum, while simultaneously minimizing cost and latency.27 

To be sure, there remain gaps between what CAD tools are capable of doing and what they should do.
Dependability analyzers, such as Relex® and MEADEP, tend to be very good at revealing behavior of a
given design ("what is the probability of 100 nodes surviving and computing together for 50 years?"), but
fall short when it comes to computing optimal allocations of resources, such as redundancy ("what is the
minimally redundant way of connecting nodes so that at least 100 survive and compute together for 50
years?") Refer to Figures 7 and 8. Even the simplest techniques for organizing redundancy, such as local
sparing, seem to be have been overlooked. Tools such as STAArchitecture serve to bridge these gaps.

Much more serious than gaps in CAD tool functionality: organizations frequently starve the adoption of
new tools and processes, through either shear inertia or by active resistance. Economies of scale may
account for some starvation: by comparison with semiconductor products, spacecraft design is a relatively
small niche. Nevertheless, we would be remiss to understate the importance and difficulty of integrating
breakthrough CAD tools and processes into spacecraft development teams. Figure 11 illustrates this wide-
spread problem, one which severely impedes the advent of self-healing avionics and software.

26. Amphion is based on process algebra; SPIN uses model checking [Schneider 1999 E2].
27. Cf. Figures 15 through 20. It is beyond our scope to attempt a comprehensive survey of CAD tools for
software/hardware co-design; such a task is being undertaken by JPL’s Design Center [Chau 1999]. Rather, our
objective is to indicate the importance and benefits of architectural-level CAD to self-healing autonomous starships.
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As Figure 11 suggests, a peculiar pattern of human resistance often arises when new CAD tools or design
processes promote and incorporate rigorous models.28 With the notable exception of Cassini [Marcus
1998], this has resulted in a conspicuous lack of attention to detail among recent missions. Maintaining an
informal team of generalists was, in fact, a deliberate strategy for Mars Pathfinder [JPL 1994 Pathfinder
Software], [Muirhead 1996 Pathfinder Design], [Muirhead 1996 Pathfinder Test]. The success of Path-
finder has led subsequent missions to adopt similar cost-cutting measures [Hotz 1999 Dec]; 29 e.g.,
i) design documentation limited to viewgraphs and email; ii) decisions and rationale for decisions not sys-
tematically captured by meeting minutes.30 Many of these Pathfinder practices (or omission of practices)
run counter to NASA’s Strategic Plan for risk management [Lalli 1998], or NASA reliability standard NSS
174013 [Voas et al 1997]. Abandoning rigor and attention to detail is exactly the opposite of what we need
to do in order to construct self-healing software and avionics for starships [Hecht and Fiorentino 1988].

Figure 11: By resisting new CAD tools and design processes, organizations shoot themselves in the foot. 
The problem impedes near-term missions as well as self-healing autonomous starships.

28. Another example of such resistance is provided by a reviewer of a proposal to NASA’s Small Business Innovative
Research (SBIR) Program: "…limited utility. Analysis of graph theoretic connectivity is largely not a problem in the
design of most fault-tolerant systems." Perhaps not, but such analysis should be part of the design of fault tolerant
systems! Graph theoretic fault tolerance is a consequence of requirements 3.6 through 3.8, and is the focus of
Section 4. Had graph theoretic fault tolerance been properly applied, X2000 architects would have used 18 serial bus
wires per node instead of 36 [LaForge and Korver 2000 Graph Fault Tolerance]. Ironically, the SBIR topic called for
"mathematics-based methods for specification, design, and analysis of digital systems" [NASA 1999].
29. Mars Climate Orbiter, Polar Lander, and Deep Space 2 were not successful [Hotz 1999 Nov], [Wilford 1999].
30. Compare Table 5 of [LaForge 1999 JPL D-16485] with findings of the Mars Polar Lander investigation: "faulty
communications" between spacecraft designers and assembly team, technical dialogs "inadequate" [Broad 1999].
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flagship project for multi-mission avionics.

                                 

a. Both of these people are respected, talented professionals.
The purpose of the example is not to inflame, but rather
to encourage acceptance of new tools and processes.
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Unless and until design teams embrace the new generation of CAD tools and processes, we remain
deprived of the full benefit of software such as MEADEP, Relex®, SPIN, Amphion, and STAArchitecture.
Conversely, embracing such tools, and the processes they embody, will enable spacecraft that are more
dependable and more capable. This pertains especially in the case of self-healing starship autonomy.

Having examined requirements for starship software and avionics from the standpoint of computer aided
design, let us consider three key issues rooted chiefly in process. We begin by observing that traditional
design of software and avionics for long duration missions places heavy emphasis on operational reliabil-
ity, and this is proper. What is not proper, however, is the extent to which we tend to underemphasize the
need for making the software and avionics work in the first place.31 Frequently, and mistakenly, we down-
play the importance of manufacturable yield. As is the case with CAD tools, spacecraft design teams would
do well to draw on a lesson long since learned by the semiconductor industry:32

3.15  Designing starship reliability without regard for yield is like borrowing money at loanshark interest:
to realistically satisfy budgets and schedules requires high levels of reliability and manufacturing yield.

As Figure 12 depicts, it is important to consider yield and reliability holistically, not only at the level of
basic components, but at all levels of integration. In the vein of modular manufacturability (cf. page 6),
Ted Marcopolus of Hewlett-Packard Corporation has demonstrated how to economically achieve yield and
reliability, largely through measurements carried out with his Lunar Prospector Electrical Test-Set (LETS)
[Marcopulos 1998].33 Similar, untapped opportunities await us in the domain of software:

3.16  The teams that build onboard or earth-based software for starships will instrument failures and faults 
of that software, at quantifiable levels commensurate with how we measure physical aspects of avionics.

31. By "work in the first place" we mean that each subsystem passes test at all levels of integration.
32. The semiconductor industry in fact accords yield higher priority than reliability. There is also an unfortunate lack
of communication between yield engineers and reliability engineers. We do not advocate this latter practice for space-
craft design teams! Rather, we recommend adopting an economics-based view of dependable systems, with yield and
reliability two sides of the same currency. This position is elaborated by [Lalli 1998].

Figure 12: Manufacturers had a difficult time producing working copies of the wiring harness that caused 
this operational failure [Halvorson 1999]. The explosion dramatizes how low yield leads to low reliability. 

Conversely, systems with high yield tend to be more reliable. (U.S. Air Force photos)

33. Interestingly, Lunar Prospector was controlled from earth, and did not have an onboard flight computer.

Metal-to-metal
short circuit in SRAM

Pinhole defect in
DRAM gate oxide

Air Force Titan 4A Titan 4A explodes 41 seconds after launch, Faulty wiring that
led to Titan 4A failureprior to 12-Aug-1998 launch a $1B loss second only to that of Challenger
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As with hardware, software systems tend to be more reliable if they begin their operational life with fewer
faults ([Koshgoftaar et al 1998] p. 71). Avoidance is, and will remain, the most economical approach to
handling software faults ([Siewiorek and Swarz 1982], Chap. 3).34 Furthermore, a great deal – perhaps
most – of the complexity of a starship will be encompassed by its onboard and earth-based software. For
electronics we measure, in excruciating detail, quantities such as current leakage, doping concentrations,
and variations in oxide thickness [Bendetto 1998], [Runyon 1999], [Taur 1999], [Zorian 1999]. These
quantities guide changes to our development processes – changes which converge on hardware that is suit-
able for operation. In the case of software, however, we have yet to deploy instrumentation that quantifies
the relation between failures and faults, faults and their root causes [Glass 1997].35 The viability of star-
ship software depends on possessing, and taking advantage of, such instrumentation [Meyer 1999].

For illustration, suppose that we observe 100 mission-critical failures in the software module responsible
for sending science data to earth. Further suppose that, over the same development cycle, we observe 10
mission-critical failures in the software module that manages the distribution of spacecraft power. At first
blush, the order of magnitude difference in module failure rates suggests that we better spend more project
dollars testing communication software. But wait! This line of reasoning is based on the tacit assumption
that the two modules are of comparable complexity, and that they have been subjected to testing at approx-
imately the same level of intensity. If these assumptions do not hold, then uncovering, say, 95% of mis-
sion-critical faults in communication software could cost much less than uncovering 95% of mission-
critical faults in the power distribution software. In this case, we would do better to spend more project
dollars testing power distribution software. To effect a decision that accounts for all of these factors, we
need a predictive model that tells us how to minimize the test intensity (cost), while maintaining, say, 95%
fault coverage (benefit), as a function of application complexity (independent variable). Alternatively,
such a relation can help us predict the fault coverage, as a function of application complexity and test
intensity. The benefit of such a predictive model is born out in the avoidance of software design faults.

To develop such a predictive model, we need to instrument the software development process in order to
1) trace failures from the point at which they are observed to the point at which the underlying fault(s)
were inserted into the system; 2) measure the evolving complexity of the application software; 3) quantify

34. It is in general much more expensive to tolerate latent software faults that manifest in situ.
35. An unmanned NASA mission may have as many as three separate problem reporting and tracking systems; e.g.,
software only (PFR), mission level (PR), and "institutional" (FR). As intimated by the caption to Figure 13, such sys-
tems do not at present satisfy requirements for quantitatively instrumenting software failures and faults.

Figure 13: The best instrumented software yet reported illuminates overall trends [Koshgoftaar et al 1998], 
but falls short of pinpointing relations between failures and faults. It also remains to quantify the rate of 

fault discovery against application and test code intensity, in the domain of spacecraft. Attempts to gather 
such statistics with Deep Space 1 and Cassini were unsuccessful, largely due to lack of programmatic 

support ([Nikora et al 1998], [LaForge 1997 CVS], [LaForge 1997 DS1]) and tools (cf. discussion of 3.14).
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the rate, type, and severity of faults; and 4) quantify test intensity and the way it changes over time [Mun-
son and Werries 1996]. Patterns between failures, faults, program structure, and test intensity will emerge,
and the fidelity of our model will continually improve [Nikora et al 1998]. At a tactical level, such work
will enable engineers and managers to answer questions such as: How many faults are there? In what mod-
ules are the faults? How quickly are they being removed? Where should fault removal efforts be applied,
and to what extent? Refer to Figure 13. The Army/Air Force Joint Surveillance Target Attack Radar Sys-
tem (JStars) appears to be the only project for which a significant volume of such data, coarse-grained as it
is, has been reported ([Koshgoftaar et al 1998], [Voas et al 1997] "data elusive"). Development of an
instrumented software model, and its application to work we propose for Phase II, would synergistically
benefit starship autonomy.

As the caption to Figure 13 alludes, programmatic support (or lack thereof) has a prevailing influence (pos-
itive or negative) on advances in development processes [Cole 1999]. The discussion accompanying
requirement 3.14 underscores how this applies as well to CAD tools and to the modeling techniques CAD
tools embody. Mars Pathfinder and the X2000 Mission Data System software exemplify how teamwork
between engineers and managers enable successful implementation of architectures and algorithms
[Woerner and Lehman 1995], [Muirhead 1996 Pathfinder Design], [Muirhead 1996 Pathfinder Test], [Ras-
mussen and Sacks 1998]. At the opposite end of the spectrum, marginalization of the Deep Space 1
Remote Agent software demonstrates how self-healing autonomy can suffer in the face of programmatic
obstacles [Savino 1997].36 Figure 14 recounts an analogous setback in the domain of hardware.37 In sum-
mary, the last item in our list of enabling characteristics may be the most important of all:

3.17  On par with any technical consideration, administrators and managers of resources must
actively promote, and participate in the development of, self-healing starship autonomy.

36. "RA" became "RAX": initially planned for controlling the entire DS1 spacecraft, the Remote Agent was relegated
to experimental status; RAX successfully carried out three out of four scheduled tests over a four day period of in
vitro activation [JPL DS1 Press Release], [Gluck 1999], [Bernard 1999].
37. Since the 20-Aug-1998 Preliminary Design Review [Chau 1998 PDR], X2000 has scuttled: i) the multi-chip
module (MCM slice) backplane and packaging [Hunter 1997], [Hunter 1998]; ii) allocation of one computer or
microcontroller per slice [Chau 1998]; iii) the MCM slices themselves [Steiner 1998], [Chau and Holmberg 1998]
(reverted to printed circuit boards); iv) high bandwidth 1394 Firewire Bus for internode communication (Firewire
controllers remain, but, in the absence of microcontrollers, are without purpose) [Chau 1999]. In fact, X2000 marks a
second retreat from stacked wafer avionics, previously planned for DS1 [Alkalai and Geer 1996], [Savino 1997].

Figure 14: Wafer stack adopted by X2000, then cancelled.37 Retreats of this nature snuff out breakthroughs 
in self-healing autonomy. Conversely, programmatic support enables self-healing autonomy.
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Themes Points of Interest Details

Modeling Akin to the use of imaginary numbers to characterize alternating currents,
the game of Connect-the-Dots serves as a fountainhead for self-healing architectures.

Sec. 4.1
p. 22

Distance within
architectures

Connect-the-Dots based on metric spaces defined by structure and labeling.
Latency modeled by radius and diameter.

Sec. 4.2–4.5
Tables 7–15

Performable
diagnosis and 
configuration

Global properties of self-healing systems emerge as a consequence
of locally-specifiable properties of connectivity.

Sec. 4.2– 4.5

CAD tools STAArchitecture optimizes interconnection, maximizes design leverage. Figs 15-20

Key to
performability

What (f+1)-connected n-node graphs have a) fewest edges and b) minimize the 
maximum radius or diameter of quorums induced by deleting up to f of the n nodes? Sec. 4.1.1

Performability Clique-based K-cubes preferred to cycle-based C-cubes Fig. 21

Minimum size,
f-fault-tolerant

Worst-case: quorums guaranteed by chordal graphs of [Hayes 1976]: poor latency, 
diagnosable at size quadratic in a constant proportion np of faulty nodes.

p. 27
Sec. 4.6

Trees versus
connected

components

Trees overconstrain what we need to build.
Insisting on configuration of a tree discards edges that could be used to carry signals, 

artificially limits throughput, leads to unnecessary re-initialization.
Target quorum should not be limited to a tree that spans healthy nodes,

but rather should include all edges between healthy nodes.

Sec. 4.2.1
Fig. 22–24

Algorithms for
diagnosis,

configuration

Maximum parallelization (minimum serialization) achieved with connected compo-
nent heuristic $connected. Under blocking constraints, efficiency bounded by the 

number of matchings in a one-factorization,63 and by the arboricity.55

Fig. 22–24
Fig. 30–32 

Notation Index of terms, definitions, symbols Table 6

Lower bound
on radius Fault-tolerant variations on a bound attributed to Moore: inequalities (1) and (2) Table 7

Sec. 4.5

C-cubes
dimension d

radix j

Suboptimal: diverge from the Moore Bound. Distance governed by modulo-j varia-
tion on L1 metric. Lower bound on quorum radius and diameter gleaned by explicat-

ing surface area and volume of balls in this metric; upper bounds by construction.

Sec. 4.2, 4.3
Sec. 4.5

K-cubes
dimension d

radix j

Optimal: in a ratioed asymptotic sense, converge to Moore Bound for bounded d. 
Distance governed by Hamming metric. Intersects with C-cubes when radix is less 

than 5. Distinct from C-cubes for radices greater than or equal to 5.

Table 7
Sec. 4.2, 4.4

Table 11

K-cube-con-
nected cycles, 

edges

Optimal: in a ratioed asymptotic sense, converge to Moore Bound when dimension, 
cycle length sufficiently small. Distance governed by a hybrid Hamming-cyclic met-

ric. Fill in gaps between points of constructibility for K-cubes.

Sec. 4.4
Tables 7, 12
Tables 13, 14

Stars,
cycles, cliques

Unique graph architectures with minimum size, minimum quorum radius and diame-
ter, at minimum (f = 0, 1) and maximum (f = n-2, n-1) fault tolerance.

Table 7
Table 15

Probabilistic 
diagnosis,

configuration

 STAArchitecture delivers on requirements 3.6 through 3.8. Tolerance to constant
proportion of faults is feasible: quorums self-diagnose, self-configure. Size of redun-
dant architecture: Θ(n2) to Θ(n log n) to Θ(n), depending on stringency of conditions

Sec. 4.6
Table 16

Fig. 30–32

Unfinished
business

Characterize architectures satisfying 4.1.1, with f = np, in the probabilistic and worst 
cases. Rigorously characterize MTAD with imperfect test coverage.

 4.6.2, 4.6.3
4.6.4

Table 5: Technical highlights of Section 4. Much of this material will be published
in [LaForge and Korver 2000 Graph Fault Tolerance] and in [LaForge and Korver 2000 MTAD].
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4.  Advances in Self-Healing Architectures and Algorithms

In broad strokes, Sections 2 and 3 paint a vignette of challenges and opportunities for co-design of starship
software and hardware. Refer to Tables 3 and 5. Wielding a somewhat finer brush, this section portrays our
in-depth progress on solutions that address requirements 3.6 through 3.9, as well as3.14. We introduce
these solutions by way of an historical analogy and a practical example.

4.1  Configuration: STAArchitecture Connects the Dots

Charles Proteus Steinmetz is perhaps best known for showing us how to use imaginary numbers to predict
what electricity will do. Indeed, Cornell Professor Vladimir Karapetoff observed that Steinmetz, when
Chief Consulting Engineer for the General Electric Company, was "allowed to try to generate electricity
out of the square root of negative one". Adds the New York Times:

That, doubtless, was what the man [Steinmetz] often seemed to be doing to those to whom
mathematics as he knew it was equally incomprehensible and useless. Fortunately his employers – 

no genius ever had better and few as good – took a different view. ([Elfun 1977], p. 69)

While we do not purport to be of the same caliber as Steinmetz, our fundamental approach is similar to his.
Instead of generating electricity out of the square root of negative one, we synthesize self-healing architec-
tures and algorithms by playing Connect-the-Dots [Knowledge Adventure 1999].

For illustration, suppose that you are designing computational avionics whose n processing nodes (the
dots) are connected by point-to-point edges: each edge carries signals over one or more parallel channels.38

Further suppose: i) the manufacturing and operational cost of your system is dominated by degree – that is,
by the number of edges (count of channels or pins) emanating from each node; ii) the latency of a signal is
dominated by pathlength – that is, by (one plus) the number of nodes that the signal must traverse. Your
primary design objective (4.1.1a) is to maintain a quorum in the presence of a bounded number f of parti-
tioning faults – that is, failed nodes that block signals.39 Since faults may be distributed in an arbitrary
fashion, f is the worst-case fault tolerance. Figure15 illustrates for (n, f ) = (16, 2). 

38. Cf. 3.7a and b, p. 13. Example based on initial X2000 avionics design depicted in Figure 14. Also see [LaForge
1999 JPL D-16485], [LaForge and Korver 2000 Graph Fault Tolerance], and references cited in footnote 37.
39. Partitioning faults are not necessarily nodes that have failed silent, but for the purpose of our illustration the two
may be considered equivalent. Because vertex connectivity is no greater than edge connectivity,43 bounding the num-
ber of partitioning faults conservatively encompasses failures in the edges.

Figure 15: 2-fault-tolerant graph architecture handcrafted by two experienced designers, node degree = 6.
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In the interest of performance, your secondary objective (4.1.1b) is to minimize communication latency
[Agarwal 1991]. Each processing element of our architecture corresponds to one of n nodes in a graph,
while the edges of the graph prescribe a "directly connected to" relation between pairs of nodes.40 The
number of edges in a path is its length.41 The (graph) distance between two nodes is the length of the short-
est path that connects them (or infinity, if there is no such path). The eccentricity of a node is the maximum
distance to another node in the graph. The graph radius is the minimum eccentricity, taken over all nodes.
The graph diameter is its maximum eccentricity.42 A graph is connected if is has finite radius or diameter;
equivalently, if there is a path between every pair of nodes. The (vertex) connectivity of a graph G is the
minimum number of nodes whose removal from G results in a disconnected graph, or a lone node.43 Since
a partitioning fault is equivalent to removing a node from a graph, we are especially interested in sub-
graphs induced by removing as many as f nodes, along with all edges belonging to the removed nodes. An
induced subgraph that consists of a single connected component is a quorum. Radius and diameter are nat-
ural measures of latency, and this leads to our fundamental question about performable structures:

4.1.1  What (f+1)-connected n-node graphs have a) fewest edges and b) minimize the maximum
radius or diameter of quorums induced by deleting up to f of the n nodes?

Starship architects need help answering 4.1.1, even with n as few as 16. The engineers who collaborated
for weeks on the design of Figure 15 believed (correctly, but without the benefit of rigor) that their solution
would tolerate two faults.17 Especially striking is the doubling of edges, intention of which was to tolerate
one, perhaps three broken wires (our engineers weren’t sure), in addition to two faulty nodes. Such lack of
crisp formulation tempts requirements drift: how many faults to tolerate … two? five?44 As Figures 16
through 20 demonstrate, the proper tool, incorporating knowledge of graph architectures, can clarify such
questions, provide optimum or near optimum solutions, and minimize requirements drift. Over a range of
benefits (fault tolerance, latency) and cost (wires or pins per node), our STAArchitecture software, devel-

40. If more than one edge may connect nodes then we have a multigraph, example of which is depicted in Figure 15.
41. In a path, each edge may be traversed only once. Multiple traversals of some edge give rise to a walk.
42. The diameter is at least the radius and at most twice the radius ([Chartrand and Lesniak 1986], Thm 2.4).
43. "Node" and "vertex" are interchangeable. Vertex connectivity is to be distinguished from edge connectivity; the
latter equals the minimum number of edges whose removal results in a disconnected graph or a lone vertex:

vertex connectivity ≤ edge connectivity ≤ minimum degree ([Chartrand and Lesniak 1986], Thm 5.1:
44. What about combinations of broken wires and nodes? The inequality stated in footnote 43 implies that the
worst-case cost of tolerating a broken wire is at least as great as that for a faulty node. Furthermore, equality (and at
minimum cost) is achievable for every n and f [Hayes 1976]. It therefore suffices to consider faulty nodes only.

Figure 16: Same cost (node degree = 6) as design of Figure 15, but improved fault tolerance (5) and latency.
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oped as part of this Phase I effort, recommends architectures that are optimal or near-optimal. When
engaged in this game of Connect-the-Dots, STAArchitecture outplays the human hand.

Figure 17: Less cost (node degree = 5) than with Figure 15, but improved fault tolerance (4) and latency.

Figure 18: 3-fault-tolerant choice, value again superior to that of Figure 15: node degree = 4, less latency.

Figure 19: Same fault tolerance (2) and latency as in Figure 15, but at half the cost (node degree = 3).
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Figure 20: STAArchitecture synthesizes and analyzes architectures for self-healing multicomputers at a 
level where the designer has maximum leverage: interconnection of computational nodes.
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4.2  Performability: STAArchitecture Applies Knowledge About Distance

Recalling the opening passages of Section 2, interstellar travel and self-healing architectures share a com-
mon theme: distance. By contrast to the L2 distance used in celestial measurements,45 we often employ the
graph distance defined in Section 4.1.46 We also exploit the L1 (a.k.a. Manhattan or city block) distance
defined by equation (6). In executable form, STAArchitecture brings to bear an arsenal of theorems and
algorithms, many of our own creation. Let us explain how this arsenal is stockpiled.

In his seminal introduction of graph models for configuration,47 [Hayes 1976] proposes and analyzes f-
fault-tolerant architectures with minimum edge count, a.k.a. size.48 A lower bound on size is readily seen
by noting that the connectivity of a graph is at most the minimum degree of a node in the graph.43 In con-
sequence, the degree of every node in an ( f+1)-connected graph (i.e., f-fault-tolerant graph architecture) is
at least f+1. If we sum the degrees of all the nodes then we have counted every edge twice. The size of any
(f+1)-connected n-node graph is therefore at least n(f+1) /2 . For any integers n > f > 0, moreover,
[Hayes 1976] constructively achieves this bound with chordal graphs of order n and size n(f+1)/2 from
which we can remove i vertices, 0≤ i ≤ f, and still have an n-i vertices connected together as a path
Pn-i.

49, 50 As long as quorum latency is not a significant concern, these chordal graphs effectively answer,
and serve as a general solution to, 4.1.1a.

45. The Euclidean distance L2 (x, y) is the square root of the sum of the squared differences of the respective coordi-
nates of x and y. Though standard, this notation conflicts with that used by mission planners for Lagrange points.
46. Following mathematical custom, we will use the "distance" and "metric" interchangeably.

Figure 21: Performability measures the combination of fault tolerance and performance. The fractional 
fault tolerance of K-cubes (and their relatives, K-cube-connected edges and cycles) is superior to that of 
traditional C-cubes. Moreover, for given fault tolerance, and at minimum cost of channels and pins per 

node, the diameter of a K-cube is less than the radius of the corresponding C-cube. Furthermore, the radii 
of K-cubes approach the lower bound of inequality (1), whereas C-cube radii diverge from this bound.

47. The somewhat busy channel routing of Figure 16 serves as reminder to consider the area and wirelength of layout,
as well as graph properties. A layout model (requirement 3.10, page 13) is particularly applicable to very large scale
integrated (VLSI) circuits; for a detailed elaboration, refer to [Ullman 1984], [LaForge 1999 Trans. Computers], or
[LaForge 1999 Trans. Reliability]. By contrast with VLSI layout, this section exposes properties of graphs in order to
capture the cost of fault tolerant point-to-point structures such as buses or networks.
48. The size e and order n of a graph are the number of edges resp. number of vertices it contains.
49. For limited f, [Hayes 1976] also gives graph architectures for simple cycles and balanced trees.50

Performability : Why Prefer Clique-Based K-cubes Over Cycle-Based C-cubes
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On the other hand, where latency is a concern (as in the case of high performance starship multicomput-
ers), quorums configured from the chordal graphs of [Hayes 1976] are about as far from optimal as possi-
ble: i) the radius of Pn-i equals (n-i-1)/2 , the maximum possible; ii) the diameter of Pn-i equals n-i-1,
again the maximum possible; iii) the radius of any quorum (not just a Pn-i) formed from a chordal graph is
greater than that formed from a one-dimensional K-cube-connected cycle.51 For illustration refer to
Figure 21. At (n, f ) = (125, 11) or (n, f ) = (15625, 11) chordal graphs have radii 11 resp. 1302 ([LaForge
1999 JPL D-16485] Cor. 28.1, 28.2), far in excess of the corresponding values for an 11-fault-tolerant 125-
node 5-ary K-cubes or 15625-node 5-ary C-cubes. For these reasons we pursue holistic solutions to 4.1.1.

Radius and diameter are related, but somewhat different measures of latency.42 Nodes with minimum
eccentricity (equal to the radius) are central. Nodes with maximum eccentricity (equal to the diameter) are
peripheral. A tendency among contemporary point-to-point bus standards (such as Firewire37, 52) is to pre-
scribe connectivity using the fewest number of edges; i.e., to force a quorum that comprises a tree.50

Where a central master marshals bus traffic (as is the case with Firewire), it makes sense to assign mastery
to the root of the tree, and (in the interest of minimizing latency) to make this root a central node of the
quorum. Unfortunately, such predilection for configuring a tree is detrimental, for at least two reasons:

i) Trees overconstrain what we need to build (cf. paragraph preceding requirement 3.7, p. 12)

ii) Insisting on configuration of a tree discards edges that could be used to carry signals. This a) artificially 
limits throughput, and b) has the practical effect of re-initializing the system whenever a fault is detected.

Since a path is a special case of a tree, remark (i) pertains in particular to the Pn-i ’s configured from the
chordal graphs of [Hayes 1976]. In addition, the tree architectures considered by [Hayes 1976] are tolerant
to at most one fault, and trees configured from these are balanced. By comparison to the problem we wish
to consider, this is overconstrained (our trees need not be balanced, we wish to tolerate more than one
fault). There are as well differences with a number of other works. [Kwan and Toida 1981] consider toler-
ance to one and two faults for balanced trees, and whose every level represents a potentially different type
of processor. [Dutt and Hayes 1990] use vertex covering to design balanced j-ary trees that are optimal
when f < j .53 In terms of hardware, algorithms, and human effort, these examples illustrate how trees over-
constrain what we are to build.

Though not explicated in 4.1.1, throughput tends to improve as latency improves.54 For example, the
worst-case source-destination throughput for a minimum size f-tolerant graph architecture containing i ≤ f
faults equals f + 1 - i times the edge capacity. As illustrated in Figure 20, STAArchitecture uses max-flow
algorithms to calculate throughput of a faulted instance. To maximize average throughput (single source
and destination, or aggregate overall [Sampels 1997]), we want to retain as many edges as possible. Insist-
ing that our quorum be a tree (iia) defeats this goal; it also imposes unnecessary complexity (iib) on algo-
rithms for diagnosis and configuration. This latter point is underscored by Figures 22 through 24.

50. A graph T of order n is a tree if and only if T is connected and cycle-free; equivalently, T is connected and has
minimum size n-1 ([Chartrand and Lesniak 1986], Chapter 3). T is said to span H if T and H have the same vertices
and every edge of T is an edge of H. Equivalent conditions for H to be connected: (cf. page 23): i) every pair of verti-
ces is connected by at least one path; ii)H is spanned by a tree.
51. Here f is assumed to be odd. The quorum radii may in fact be equal, but only in a finite number of instances. In
one dimension, K-cube-connected cycles are known as secant graphs ([LaForge 1999 JPL D-16485], Sec. 3.6).
52. Cf. Firewire COTS intellectual property as a ticking box, Sec. 3.13, p. 15.
53. Still other works treat configuration of balanced trees in either a probabilistic context, or with respect to VLSI lay-
out area and maximum wirelength (e.g., [Chen and Upadhyaya 1993]).
54. This is analogous to a programming rule of thumb whose origins are rooted in the theory of computation
([Hopcroft and Ullman 1979] Chap. 12): the space complexity of a program is bounded by its time complexity.
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Distributed Diagnosis and Configuration Algorithm Atree % Configure a tree from a cycle

1) Enable all ports % N.B. runs on ui ; initial port
2) except those between (un-1, u0), (u n /2, u [n /2 + 1] mod n ) % disable values in ROM
3) Initial bus reset % Bus reset (not command reset)
4) For each of ui’s enabled ports in P0, n /2 % Have at most one fault;
5) If test (ui , u [i-1] mod n ) fails %  hence at most 2 buses are formed
6) then ui marks u [i-1] mod n, disables its port to u [i-1] mod n % Record results of failed test
7) ui issues a bus reset %  and disable immediately
8) If test (ui , u [i+ 1] mod n) fails % Performing a bus reset
9) then ui marks u [i+ 1] mod n, disables its port to u [i+ 1] mod n%  guarantees two leaves
10) ui issues a bus reset
11) Propagate the marked status of each node throughout bus % Get info to least one of u0,  u n /2
12) u0 disables its port to u1; u1 disables its port to u0 %  Switch to complementary bus
13) u n / 2 disables its port to u [n /2 - 1] mod n; u [n /2 - 1] mod n  disables its port to u n /2
14) u0 enables its port to un-1; un-1 enables its port to u0
15) u n /2  enables its port to u [n /2 + 1] mod n; u [n /2 + 1] mod n  enables its port to u n /2
16) u0 and u n /2 issue bus reset % Node insertion/ deletion
17) For each of ui’s enabled ports in Pn /2, 0  % Have at most one fault;
18) If test (ui , u [i-1] mod n ) fails %  hence at most 2 buses are formed
19) then ui marks u [i-1] mod n, disables its port to u [i-1] mod n % Record results of failed test
20) ui issues a bus reset %  and disable immediately
21) If test (ui , u [i+ 1] mod n) fails % Performing a bus reset
22) then ui marks u [i+ 1] mod n , disables its port to u [i+ 1] mod n%  guarantees two leaves
23) ui issues a bus reset
24) Propagate the marked status of each node throughout bus % Get info to least one of u0, u n /2
25) If u1 is not marked by u0
26) thenu0 enables its port to u1
27) If u [n /2 - 1] mod n is not marked by u n /2 % Have at most one fault;
28)   and some other node is marked %  hence u0,  u n /2, if not faulty,
29) thenu n /2 enables its port to u [n /2 - 1] mod n %  has status of marked nodes
30) If u0 is not marked by u1
31) thenu1 enables its port to u0
32) If u n /2 is not marked by u [n /2 - 1] mod n
33)   and some other node is marked
34) thenu [n /2 - 1] mod n enables its port to u n /2
35) u0 and u n /2 issue bus reset % Final configuration

Distributed Diagnosis and Configuration Algorithm Aconnected % Configure a quorum from a cycle
%  N.B. runs on ui .

1) If test (ui , u [i+1] mod n ) fails %  Ports initially enabled.
2) then ui  disables its port to u [i+ 1] mod n %  Test and configure
3) If test (ui , u [i-1] mod n ) fails %    clockwise
4) then ui  disables its port to u [i-1] mod n %    then counterclockwise

Figure 22: As the code for Aconnected indicates, permitting cycles simplifies diagnosis and configuration. 
Example is for configuration from Cn, the minimum size 1-fault-tolerant graph architecture on n nodes. 
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Figure 23: Dynamic reasons to permit cycles in the course of diagnosis and configuration. Doing so reduces 
both synchronization interfaces and running time: T1 ≤ Aconnected≤ T2, while T0 ≤ Atree≤ T9. Consistent 

with Figure 22, the parallel-series event timeline illustrates configuration from Cn; n = 8.
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Figure 24: Another demonstration: although the structure of a tree is less complicated than the connected 
component it spans, extracting such a tree can complicate matters. As a function of fault tolerance, the 

complexity of diagnosis and configuration increases if (sub-)quorum cycles are forbidden. Compared here: 
configuration from a 16-node 2-fault-tolerant binary K-cube-connected cycle (cf. Figure 19).
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Continuing from page 27, our pronounced elaboration of points (i) and (ii)  is in part directed at stemming
the cultural tide of trees as desiderata for quorums.55 While it is true that trees foster simplification of rout-
ing algorithms,56 unbridled application of this fact undercuts performability. In summary:

4.2.1  The target quorum for self-healing architectures should not be limited to a tree that spans
healthy nodes, but rather should include all edges between healthy nodes.

Contrasting trees with connected components, we are now in a position to distinguish radius and diameter.
Denote by H an arbitrary quorum induced by deleting i nodes of an n-node (f + 1)-connected graph G. If
0 ≤ i ≤ f then this quorum is guaranteed to be connected, and therefore possesses one or more spanning
trees.50 Any tree has at most two central vertices, and they (it) always lie(s) at the intersection of maximum
length path(s). An immediate corollary is that the diameter of a tree is either twice its radius, or twice its
radius minus one ([LaForge 1999 JPL D-16485] Thm 1, Cor. 1.1). The power of this observation is bol-
stered by a theorem of [Ore 1962]: for every node u of a connected graph H, there exists a spanning tree of
H that is distance-preserving from u. Moreover, we can compute, on a Turing machine equivalent and in
time O(n(n+e)), a spanning tree having minimum radius ([LaForge 1999 JPL D-16485] Thm 36).48 Taken
together, these results imply that a there is a spanning tree of H whose radius is identical to that of H … the
best we could hope for. On the other hand, the diameter of this tree is equal to, or one less than, twice the
radius … i.e., the worst-case latency is about as bad as it gets.42 By contrast, and as depicted in Figure 21,
the quorum itself may have a diameter much smaller than twice the radius, even approaching the value of
the radius itself. The highly performable structures synthesized by STAArchitecture exhibit this feature.
For these reasons our analysis emphasizes radius.

Through the end of Section 4.5 we assume: i) faults have been correctly diagnosed; ii) the outcome of this
diagnosis is passed to a configuration algorithm (which may be distributed, cf. Figures 22 through 24);
iii) nodes (but not edges) may be faulty (i.e., deleted). Since edge connectivity is no less than vertex con-
nectivity, item (iii) does not materially affect our analysis; however, allowing the deletion of edges can
change the sharpness of our results for radius and diameter.44 Refer Table 7. STAArchitecture’s candidates
for configuration architectures are members of the set *+

n,f,k of minimum size (f+1)-connected graphs of
order n whose quorums, induced by deletion of up to f vertices, have radii at most k. For given n and f, we
naturally wish to assure that k is the exact minimum, in which case we write * n,f , perhaps with an extra
subscript k. We denote the corresponding radius by ρ(n, f ). Although the general solution to this problem
appears to be unknown,57 we can enumerate * n,0,k=2, * n,1,k=n/2, and * n,n-2,k=2; that is, ρ(n, 0) = 2,
ρ(n, 1) = n/2 , and ρ(n, n-2) = 1. For other values of f, we provide upper and lower bounds on ρ(n, f ),
and give sets *+

n,f,k whose induced quorums have O(log n) radii.

55. The complexity illustrated by Figures 22 through 24 goes deeper than first appears. If one insists that each sub-
quorum used to form a tree be cycle-free, then to cover all edges of the embedding architecture (i.e., test every possi-
ble pairwise connection), we must factor the corresponding graph into forests of trees. The union of these forests
comprises the embedding architecture, and pairs of forests are edgewise disjoint. Under the constraint of cycle-free
configuration, the extent to which diagnosis and configuration can be parallelized is at least the minimum number of
forests in any such factorization. This number is known as the aboricity of the graph, and can be calculated (albeit
somewhat awkwardly) by applying a result of Nash-Williams: Let em be the maximum size of any subgraph of order

m; the arboricity is the largest value of  ([Bollabás, 1978], Thm 5.8). By contrast, a generalization

of our connected component algorithm (Figure 22) executes in a number of serial steps that is at most the maximum
degree of a node in the graph architecture. [LaForge 1994] illustrates application of matching and Hamiltonian cycles
to parallel scheduling of tests among nodes in locally spared arrays.
56. As long as everything works properly, the simplification exploits the following property (which is, in fact, an
equivalent definition of a tree): between any two nodes there is a unique path (cf. [Anderson 1998] Chap 13-17).

max1 m n≤ ≤
em

m 1–
-------------
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We can break our analysis into four stages: i) bound the maximum radius ρ(n, i) of any quorum, as a func-
tion of the number i of vertices deleted; ii) find the maximum among these maxima ρ(n, i), for 0≤ i ≤ f ;
iii) convert to bounds on the diameter; iv) compare the corresponding results for different structures to
each other, as well as to a general lower bound ρ–

Thm 6 on the radius. The latter

 ρ(n, f) ≥  , 1 < f < n-2 (1)

is obtained by maximizing an inequality that takes into account i faults. As derived for Theorem 6 of
[LaForge 1999 JPL D-16485], that is, ρ(n, i) is at least

57. The closest body of work seems to be related to the function ϕ(n,d0,d,f), introduced by [Murty and Vijayan 1964].
Here j counts the minimum number of edges in an n-node graph with diameter at most d0, such that deletion of any f
of the vertices induces a graph of diameter at most d. Even for this relatively well-studied problem, results are con-
fined primarily to the cases d ≤ 4, f = 1 or d0 = 2 ([Bollabás, 1978], Chapter IV, Sections 2 and 3). Moreover, our for-
mulation differs in that we fix the number of edges at (f+1)n/2 , and then ask for the minimum diameter or radius
achievable in the induced quorum.

Symbol Significance

x ;  x Ceiling (least integer no less than x); floor (greatest integer no greater than x)

<u,v>; <P> Graph distance between vertices u and v; length of path P

O(g(n)); Ω(g(n)) Set of functions no greater resp. no less than c⋅g(n), for n > k, constants c, k

o(g(n)); ω(g(n)) Set of functions h(n) such that lim n → ∞ h/g = 0 resp. lim n → ∞ g/h = 0

Θ(g(n)) Intersection of O(g(n)) and Ω(g(n))

Bj
C(d,i) Number of vertices at graph distance i from any vertex in Cj

d

Cn; Cj
d n-vertex cycle; d-dimensional j-ary C-cube

e, eK(d,j); eK(d,j,n); eC(d,j) Size (number of edges) of a graph; of a Kj
d; of a Kj

d(n); of a Cj
d

f, ffrac Number, fraction f /n of faulty elements (deleted vertices) that can be tolerated

G Graph, often one that represents the configuration architecture

* +
n,f,k

Set of minimum size (f+1)-connected graphs of order n whose quorums, induced
by deletion of up to f vertices, have radii at most k

* n,f , * n,f,k Set *+
n,f,k that minimizes the maximum radius k

H ; T Quorum induced by deleting vertices from G; tree, often one that spans H

Kn=Kn
1; Kj

d n-vertex clique; d-dimensional j-ary K-cube

Kj
d(n); KmÞj

d d-dimensional j-ary K-cube-connected cycle on n resp. m⋅j d vertices

n; nK(d,j); nC(d,j) Order (number of vertices) of a graph; of a Kj
d; of a Cj

d

ρ(n, f); ρ–
Thm 6 Maximum radius among quorums induced by ≤ f faults; Moore bound of ineq. (1)

Pn; Sn n-vertex path; n-vertex star

Vj
C(d,i) Number of vertices graph distance at most i from any vertex in Cj

d

Table 6: Notation.

logf
n f 1–( ) 3+

f 2+
----------------------------
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 (2)

For graphs with maximum degree (as opposed to connectivity) f + 1, the independently obtained (1) is
equivalent to the bound attributed to Moore [Sampels 1997], and we will continue this custom.58 In partic-
ular, any minimum size (f+1)-tolerant graph that achieves equality in (1) is optimal. Refer to the last row
of Table 7. An n-node clique Kn (that is, a graph of order n and maximal size ½⋅n(n-1)) is tolerant to

58. In contrast to inequality (1), Moore’s bound is concerned with the maximum order of a graph with bounded diam-
eter and degree, in the absence of faults. Both results make use of arguments that minimize the height of a spanning
tree, with application of the formula for summing of a geometric series.

Fault tolerance f Graph architectures

Maximum of quorum  radii 
ρ(n, i), 0 ≤≤≤≤ i ≤≤≤≤ f

Maximum radius
of quorum divided 

by lower bound
ρρρρ-

Thm 6

References

At least At most

0
* n,0 uniquely the set 
of n-vertex stars Sn

1 Exactly
best possible Table 15

1
* n,1 uniquely the set 
of n-vertex cycles Cn

n/2 Exactly
best possible Table 15

2

*+
n,2 includes 

1-dimensional binary 
K-cube-connected 

cycles K2
1(n = 2m+1), 
m ≥ 2

1  if n = 5
else 

1 + n/2 /2
1 + n/2 /2 Don’t know

Table 13 
Thm 6,

discussion
on p. 40

2⋅[logj n] -1

= 2d - 1,

*+
n,2d-1 includes 

d-dimensional j-ary
C-cubes Cj

d; j ≥ 5
 j / 2⋅logj n

 j / 2⋅(logj n)

+ j / 2 - 1

Definitely not
best possible: ratio
diverges to ∞ as 

n → ∞

 Table 10 
Thms 6

Thms 6, 7 
Cor 7.1

[(j-1)⋅logj n] -1

= (j-1)⋅d - 1

*+
n,(j-1)d-1 includes 

d-dimensional j-ary
K-cubes Kj

d
logj n 1 + logj n As n → ∞: 

approaches best pos-
sible whenever 

d ∈ o(j) and 
m ∈ o(d) or d and m 

bounded. Within 
1+q+qr+r  of best 
possible whenever 

 and 

ln d ≤ r ln j, for least 
upper bounds q, r.

Tables
11, 13,
and 14

Cor 5.1
Cor 5.2

Thm 6

(j-1)⋅logj (n/2)
= (j- 1)⋅d

*+
n,(j-1)d includes 

d-dimensional j-ary
K-cube-connected 
edges K2⋅j

d, j ≥ 3

2    if d = 1

1 + logj (n/2) 2 + logj (n/2)

1 + (j- 1)⋅logj (n/m)

= (j-1)⋅d + 1

*+
n,(j-1)d+1 includes 

d-dimensional j-ary
K-cube-connected 
cycles Km⋅j

d, m ≥ 3

1 + m/2     if d = 1

m/2
+ logj (n/m)

1 + m/2
   + logj (n/m)

n-2, n-1
* 

n,n-2,1,  * 
n,n-1,1 

uniquely the set of n-
vertex cliques Kn

1 Exactly
best possible

Table 15
Thm 6

Table 7: STAArchitecture applies knowledge about the maximum quorum radius. Entries in red indicate 
deliverables derived for this Phase I effort. Citations in blue refer to [LaForge 1999 JPL D-16485].

logf
n i– 1–( ) f 1–( ) f 1 n f 1+( ) mod 2[ ]+ + +

f 1 n f 1+( ) mod 2[ ]+ +
---------------------------------------------------------------------------------------------------------

m
2
---- 1+ qd≤
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f = n-2 or f = n-1 faults, has minimum size, and delivers a quorum radius or diameter that is at most one.
Substituting the latter gives equality in (1), hence Kn matches the Moore bound and is optimal. Further-
more, with respect to our cost criteria, Kn is the unique optimum graph that is tolerant to f = n-2 or f = n-1
faults (Table 15). 

A weaker but still strong criterion asserts the optimality of a family of graphs if, as n approaches infinity,
the maximum quorum radius is within a constant factor of the Moore bound. Referring to the next-to-last
three rows of Table 7, we see that such ratioed asymptotic optimality is indeed achieved by members of the
K-cube family. The mainstay of this family, a d-dimensional Gray-coded j-ary K-cube Kj

d is recursively
constructed as follows. Kj

0 is a lone node labeled with the null string. For Kj
d we i) make j copies of Kj

d-1;
ii) join with an edge nodes u and v (from different copies of Kj

d-1) if and only if u and v have with identical
labels; iii) prepend i to the label of each node of the ith copy of Kj

d-1. Note that Kj
1 is just the clique Kj

whose nodes have been labeled from 0 to j-1. Figure 25 illustrates binary and ternary K-cubes in 3resp. 2
dimensions. Very few graphs are known to match the Moore bound [Sampels 1997], and our results estab-
lishing this for the K-cube family appear to be new. From a practical standpoint, the K-cube family deliv-
ers asymptotically minimum quorum radii whenever fault tolerance is on the order of n1/d log n.

Somewhat surprisingly, there are well-studied (f+1)-tolerant graph architectures which are mistakenly
believed to deliver optimal, or near optimal, quorum radii. As indicated by Table 7, this is indeed the case
with C-cubes. Often referred to in the literature as a "hypercube" or simply a "cube", a labeled d-dimen-
sional j-ary C-cube Cj

d is constructed as follows. For j = 2: C2
d is a d-dimensional binary K-cube K2

d

(equivalently, a (d-1)-dimensional binary K-cube-connected edge K2⋅2
d-1); for j = 4: C4

d is a K2
2d (proof

by induction); binary cubes are characterized Section 3.3 of [LaForge 1999 JPL D-16485]. For j > 2: Cj
0 is

a single unlabeled node. Cj
1 is a cycle on j vertices, numbered circularly from 0 to j-1; two vertices are

joined by an edge if and only if the modulo j difference in their labels equals ±1. Note that a one-dimen-
sional j-ary C-cube Cj

1 is the same as a j-node zero-dimensional j-ary K-cube-connected cycle Kj⋅j
0. In

general, to construct Cj
d we i) make j copies of Cj

d-1; ii) prepend i to the label of each node of the ith copy
of Cj

d-1; iii) connect with an edge vertices u and v (from different copies of Cj
d-1) if and only if the

moduloj difference in the high order digits of the labels on u and v equals ±1, and the low order d-1 digits
are identical. Alternatively, we can reserve d digits for the label on each node, thus giving to rise a con-
struction that is independent of the order in which dimensions are populated. Figure 25 illustrates 4-ary and
ternary C-cubes in 2 resp. 3 dimensions. Note that, since a cycle on three nodes is also a three-node clique,
C3

d = K3
d (equivalently, a (d-1)-dimensional ternary K-cube-connected cycle K3⋅3

d-1); K3
d ’s are character-

ized by Section 3.3 of [LaForge 1999 JPL D-16485]. It suffices therefore to consider dimensions d ≥ 2 and
radices j ≥ 5, and such is the focus of our comparison.

The volume of literature concerning C-cubes exceeds perhaps that of any other structure studied in fault
tolerance or networks (to scratch the tip of the iceberg: [Agarwal 1991], [Armstrong and Gray 1981],
[LaForge 1994]). For this reason, it is especially surprising that K-cubes and their relatives are preferred to
C-cubes. Quantitatively, this is due to: 1) the radius of a C-cube quorum exceeding the diameter of the
comparable K-cube having identical fault tolerance (Thm 6); 2) there being no relation such that, as

Figure 25: Gray-code labeling of a three-dimensional K2-cube and a two-dimensional K3-cube.
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nC = j d → ∞, the ratio of the C-cube quorum radius to the Moore bound does not diverge; i.e., this ratio
must approach infinity. With respect to both criteria, that is, C-cubes are sub-optimal. Moreover, when
scaling is such that K-cubes match the Moore bound, C-cubes diverge from the optimal quorum radius
(Cor 7.1). In this ratioed asymptotic sense, K-cubes are optimal, whereas C-cubes are sub-optimal.
Figure 21 illustrates these observations for the lowest radix (5) where C-cubes and K-cubes differ. For
j > 4 it is impossible to find a C-cube whose fault tolerance and number of nodes equals that of a K-cube,
and so we have compared the respective structures having identical fault tolerance. The fractional fault tol-
erance of C-cubes is less than that of K-cubes, and so the performability comparison is conservative.
Sections 4.3 and 4.5 establish these results in detail.

4.3  STAArchitecture Reflects New Results About Quorums from C-Cubes59

As with K-cubes, it is useful to know salient properties of C-cubes. Some (but not all) of these properties
are listed in [Zargham 1996] (p. 204). Recalling that the radix j is greater than four, let us establish results
pertaining to these properties. By step (i) on the preceding page, Cj

d contains j copies of Cj
d-1; therefore the

order nC(d, j) of Cj
d equals j⋅nC(d-1, j). Subject to the initial condition nC(0, j) = 1, verify that the unique

solution of this recurrence relation is the same as that for the number of vertices in a j-ary K-cube:

nC(d, j) = j d (3)

By step (iii) on the preceding page, the degree of a vertex60 in Cj
d equals its degree in Cj

d-1 plus 2, the

number of edges that connect it to vertices with the same labels in neighboring copies of Cj
d-1. Subject to

the initial condition of zero edges in Cj
0, the degree of each vertex in Cj

d is therefore 2d (4)

Summing (4) over all j d vertices counts every edge twice. Hence the number eC(d, j) of edges in Cj
d is

eC(d, j) = d⋅j d (5)

As is the case with K-cubes (as well as edges and cycles of K-cubes), C-cubes are vertex symmetric.61

Moreover, and as illustrated by Figure 26, the vertices of Cj
d are in one-to-one correspondence with

Figure 26: Labeling and connectivity for a C4-cube and C3-cube =K3
3 in two resp. three dimensions.

59. We use a "C" to preface the term for a cube Cj
d that is based on cycles, as opposed to a clique-based (K-)cube;

with respect to the latter, the K derives ([LaForge 1999 JPL D-16485] Sec 3.7) from notation for a j-vertex clique Kj.

60. Reflecting prevalent terminology in extremal graph theory, in this section we prefer "vertex" over "node".43

61. Loosely speaking, a graph is vertex symmetric if the perspective is the same from every vertex. More precisely, a
graph G is vertex-symmetric if the group A(G) of graph automorphisms of G acts transitively on V; i.e., for any
v, w∈ V, there is a graph automorphism α ∈ A(G) such that α(v) = w ([Biggs 1993] p. 115).
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ordered d-tuples, each of whose coordinates is a nonnegative integer. This suggests that, if two vertices
u = (ud-1, … , u0) and v = (vd-1, … , v0) are sufficiently close, their distance should be given by the L1

metric (also known as the city block, or Manhattan metric): (6)

This tendency is born out by the L1 "modulo j" metric of (7). If u and v are vertices of Kj
d, Gray-code

labeled according to steps (i) – (iii) on page 34, then <u, v> equals the number of digits where the respec-
tive labels for u and v are different ([LaForge 1999 JPL D-16485] Thm 7). The analog for C-cubes: 

Theorem 1. If u and v are vertices of Cj
d, labeled according to steps (i) – (iii) on page 34, then 

(7)

Proof. Regard arbitrary vertices u and v in Cj
d. Since Cj

d is vertex symmetric, we can assume without loss
of generality that u = (0, … , 0) = 0. By step (iii) on page 34, we must traverse at least min(vk, j-vk) edges

along the ith axis. Thus the distance from 0 to v is at least (7). Further, and again by the construction on
page 34, this bound is achieved by traversing vk edges in the positive direction of the ith axis (ifvk ≤ j-vk) or

(if vk > j-vk) by traversing j-vk edges in the negative direction of the ith axis. ❒

Equation (7) is maximized when the respective terms in the summation are maximized. That is, when
vk =  j / 2 , for all k ranging between 0 and d - 1. It immediately follows:

Corollary 1.1. The radius and diameter of Cj
d are identically d⋅ j / 2 .

Corollary 1.1 addresses the case of a Cj
d without faults. To derive a lower bound on radius, consider the

number Bj
C(d, i) of integer lattice points on the surface of, as well as the total number Vj

C(d, i) in, a closed

ball of L1 modulo j radius i. By Corollary 1.1 and equation (7), we know thatVj
C(d,d⋅ j / 2) = j d (8)

For the sake of visualization assume that j is odd; translate the labels of Cj
d so that the point  ( (j-1)/2, … ,

(j-1)/2) becomes the origin. By (7), any point v in the ball of interest belongs to an L1 ball centered at the
new origin, as long as all of the (translated) coordinates of v satisfy vk ≤ (j-1)/2. Let us establish the vol-
ume and surface area of such a ball. If the radius i equals 0 then the ball contains just the origin, which is
also on the surface in the sense that it is the number of points exact distance 0 from the center. Adopting the
latter definition:

Bj
C(0, 0) = Vj

C(d, 0) = 1 (9)

At the outset it is not clear what meaning we should accord the surface area of zero-dimensional ball with
positive radius. However, if we hold strictly to the definition used for (9) then the surface area of a zero-
dimensonal ball equals zero whenever i > 0: 

Bj
C(0, i > 0) = 0 (10)

whence  Vj
C(0, i) = 1 (11)

Refer to Figure 27. Equations (9), (10), and (11) are consistent with the one-dimensional case Bj
C(0, i) = 2

and Vj
C(0, i) = 2i+ 1 (which could have served as boundary conditions) as well as with the respective

recurrences:

Bj
C(d,i) = Bj

C(d-1,i) + 2 ∑k ≤ 0 ≤ i-1 Bj
C(d-1,k) = Bj

C(d-1,i) + Bj
C(d-1,i-1) + Bj

C(d,i-1) (12)

<u v>1, uk vk–
k 0=

d 1–

∑=

<u v>mod j, min uk vk– j uk vk––,( )
k 0=

d 1–

∑=
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Vj
C(d,i) = Vj

C(d-1,i) + 2 ∑k ≤ 0 ≤ i-1 Vj
C(d-1,k) = Vj

C(d-1,i) + Vj
C(d-1,i-1) + Vj

C(d,i-1) (13)

To obtain the righthand relation we have recursively applied the lefthand side to a split sum. Table 8 illus-
trates computation of Bj

C and Vj
C , and serves as the analog to tabulations of the surface area of balls in

K-cubes, K-cube-connected cycles, and K-cube-connected edges (cf. [LaForge 1999 JPL D-16485]
Tables 8, 10, and 13) .

Notice that the recurrence (12) for Bj
C is the same as that (13) for Vj

C, but boundary condition (10) for

Bj
Cdiffers from that (11) for Vj

C. As a result, and as illustrated in Table 8, Bj
C is asymmetric, while Vj

C is a

symmetric function of d and j. Let us use combinatorial means to solve for Vj
C. Again we focus on balls

centered at u = 0 in the translated coordinate system, and restrict the absolute value of each coordinate of v
to a value no greater than (j-1) /2 .

Figure 27: Balls in the L1 metric: recursive composition and enumeration of volume and surface area.

↓ d Bj
C(d,i) Vj

C(d,i)

 → i 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 1 3 5 7 9 11 13 15

2 1 4 8 6 12 16 20 24 1 5 13 25 41 61 85 113

3 1 6 18 38 66 102 146 198 1 8 25 63 129 231 377 575

4 1 8 32 88 192 360 608 952 1 10 41 129 321 681 1289 2241

5 1 10 50 170 450 1002 1970 3530 1 12 61 231 681 1683 3653 7183

6 1 12 72 292 912 2364 5336 10836 1 12 85 377 1289 3653 8989 19825

7 1 14 98 462 1666 4942 12642 28814 1 12 113 575 2241 7183 19825 48639

Table 8: Bj
C and Vj

C count the number of vertices on the surface of, resp. included in, a closed ball
encompassing integer lattice points, each of whose distance from the center is no greater than  j / 2 = 7.

The ball has integer L1 radiusi, and is centered at a point whose coordinates correspond to a label in Cj
d.
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Consider the 2d-tant comprising all strictly positive coordinates included in a ball of L1 radius i. The num-

ber Bj
C+ of positive integer lattice points on the surface of this ball equals the number of solutions to

(14)

Equation (14) has ordinary generating function: (15)

By Chapter 6 of [Tucker 1984], Bj
C+(d,i) is the coefficient of xi in (15): (16)

where the righthand side makes use of the symmetry of binomial coefficients. Summing over all i yields
the volume of intersection of the ball with the strictly positive 2d-tant:

(17)

The iterative simplification in (17) makes use of the recurrence for Pascal’s triangle ([Comtet 1974] [5e]).

Again recalling that each coordinate is restricted to a value no greater than (j-1)/2, let us verify (16) and
(17) by way of arguments which, unlike the preceding derivation, avoid generating functions and binomial
identities. For Bj

C+(d, i), label i tally marks with the integers from 1 to i. Tag each of d tallies, in ascending

order of tallies. Tagging the qth tally with the kth tag signifies that the value of the kth coordinate equals the
number of tallies after (k-1)st tag, up to, and including, the qth tally. Note that there an implicit tag prior to
the first tally, and that this construction assures that all coordinates are positive. For the sum of the coordi-

nates to equal i, we must tag the ith tally. This leaves  ways to distribute d-1 indistin-

guishable tags among i-1 distinguishable tallies. Since Vj
C+(d,i) corresponds to the case where the sum of

the d coordinates is at most i, we are no longer required to tag the ith tally. There are  ways to distrib-

ute the d tags among the i tallies, and this is the number of positive integer vertices in a d-dimensional ball
of L1 radius i centered at the origin.

Write Vj
C±(d, i) and Bj

C±(d, i) for the number of vertices in resp. on a d-dimensional ball of L1 radius i cen-
tered at the origin, such that no coordinate is zero. The number of ways of ordering d signs (plus or minus)
equals 2d; each ordering corresponds to a 2d-tant in d-dimensional space. In consequence,

                 (18)

For any k coordinates set to zero, we have  resp.  vertices in or on a d-dimen-

sional ball of L1 radius i centered at the origin. Since there are  ways of setting k coordinates to zero,

the volume is given by
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                 (19)

The righthand side of (19) explicates how is Vj
C(d, i) is symmetric with respect to i and d. This is in accor-

dance with boundary conditions (9) and (11), recurrence (13), and Table 8, but is to be contrasted with the
asymmetric solution to (18):

(20)

When the radius i exceeds (j-1) /2, a ball centered at the origin of Cj
d (translated) no longer includes all of

the points encompassed by the analogous ball (of identical L1 radius i ) in the d-dimensional space of points

whose coordinates are integers. For j odd, the ball of interest in Cj
d excludes those points having a coordi-

nate whose absolute value exceeds (j-1)/2; analogous to (15), the ordinary generating function is

(21)

wherein for Bj
C+(d,i) we extract the coefficient of xi. Though somewhat more complicated, the case for j

even is essentially similar. Rather than pursue this line, we focus on enumerating those points of interest:
i.e., those most distant, or most nearly distant, from any given vertex in Cj

d.

Consider points at maximum distance from the origin in an (untranslated) Cj
d, where j is even. Vertex v is

maximally distant from the origin if and only if each of the terms in (7) equals j / 2. This is possible if and
only if each coordinate of v equals j / 2. Thus (j / 2, …, j/2) is the unique point at maximum distance dj/2
from the origin:  Bj

C(d, dj/2) = 1 j even (22)

Again for the case of j even, vertex v is distance (dj/2)-1 from the origin if and only if and only if d-1 terms
in (7) equal j / 2, and one term equals (j /2)-1. The coordinate corresponding to the term whose value equals
(j / 2)-1 has two possible values: (j / 2)-1 and (j / 2)+1. There are d ways of choosing this term, in which case
the remaining d-1 terms are determined. Thus the points at distance one less than the maximum from the
origin are those having d-1 coordinates equal to j / 2 and one coordinate equal to  (j / 2) ± 1:

 Bj
C(d, [dj/2]-1) = 2d j even (23)

Suppose that j is odd. Vertex v is maximally distant from the origin if and only if each of the terms in (7)
equals (j-1)/2. Thus the points at maximum distance d(j-1)/2 from the origin have coordinates of the form
((j ±1)/2, …, (j±1)/2). That is:

 Bj
C(d, d(j-1)/2) = 2d j odd (24)

Let us apply the notion of opposite pairs to the case of C-cubes: u and v are opposite if their distance equals
the diameter (alternatively, the radius) d⋅ j / 2 of Cj

d. Vertices u and v are nearly opposite if their distance

is d⋅ j / 2 - 1, one less than the diameter (alternatively, the radius) of Cj
d.

Theorem 2. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5.

The diameter of H is at least d⋅ j / 2 .
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Proof. Suppose j is even. By (22), any given vertex u belongs to one opposite pair. Summing over all j d

vertices counts every pair of opposites twice, and the total number of opposite pairs equals ½⋅j d. Each
vertex we delete from Cj

d removes at most one opposite pair. Therefore, there remains at least one opposite

pair as long as 4d ≤ j d (25)

which follows by noting that d ≤ 2 d-1 ≤ 5 d-1 ≤ j d-1 Suppose that j is odd. By (22), any given vertex u
belongs to 2d opposite pairs. Summing over all j d vertices counts every pair of opposites twice, and the
total number of opposite pairs equals 2 d-1j d. Each vertex we delete from Cj

d removes at most 2d opposite

pairs. Therefore, there remains at least one opposite pair as long as (2d-1) ⋅2d < 2 d-1⋅ j d (26)

which reduces to (25). ❒

Theorem 3. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5. If i = 0 or

j is odd then the radius of H is at least d(j-1)/2. For i ≥ 1 and j even, the radius of H is at least (dj/2)-1.

Proof. The case i = 0 is covered by Corollary 1.1. Suppose that j is odd. By (24), undeleted vertex u has at
least one opposite as long as 2d-1 < 2 d (27)

which follows by inspection. Suppose that j is even. By (23), there is at least one vertex nearly opposite to
undeleted vertex u as long as 2d-1 < 2d (28)

which follows since zero is less than one. ❒

Theorem 4. (C-cube connectivity, upper bound on diameter, j ≥ 5.) If v lies at distance i > 0 from vertex
u of Cj

d then between u and v there is a set of 2d interior-disjoint paths. Let q be the number of coordi-
nates where u and v are identical. i)  d-q of these paths P(0) … P(d-q-1) have length i; ii) 2q of these paths
P(d-q) … P(d+q-1) have length i+2. For 0≤ r ≤ d-q-1, let cr

+ denote the value of 

that is no larger than any set of d-1-r other such c+ ’s, (cf. (29)) with the ordering ranging over
0 ≤ k ≤ d-1. iii) Of the remaining d-q paths P(d+q) … P(2d-1), path P(d+q+r) traverses i+2cr

+- j edges. 

Proof. By induction on d. As a basis take d = 1. Since Cj
d is vertex symmetric we can, without loss of gen-

erality, suppose that u0 = 0 and v0 = i. For property (i), trace from u to v a path P(0) of minimum length i by
traversing i edges along the cycle. Property (ii) holds since q is necessarily 0. For (iii), trace from u to v a
path P(1) in a direction opposite to, and interior-disjoint with, P(0); note that c0

+ = j-i , and that

P(1+0-1+1) = P(1) has length j-i = i+ 2j-2i- j = i +2c0
+- j . The theorem holds at d = 1.

path length →  1 2 3 4 5 6 7 8 9 10       path  →
  h

stage →  m

000 001 002 003 013 023 033 133 233 333 0 1 2

000 010 020 030 130 230 330 331 332 333 1 2 0

000 100 200 300 301 302 303 313 323 333 2 0 1

000 006 005 004 014 024 034 134 234 334 333 permutation 
matrix, cyclic 

group of order 3000 060 050 040 140 240 340 341 342 343 333

000 600 500 400 401 402 403 413 423 433 333

Table 9: Illustration of Theorem 4: 2d = 6 paths from the origin (0,0,0) to opposite (3,3,3) vertex in a three-
dimensional 7-ary C-cube. Swingback paths are listed in the bottom three rows.

max uk vk– j uk vk––,( )
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Assume that the theorem holds in 0, … (d-1) dimensions, and regard arbitrary vertices u and v in Cj
d,

d > 1, j ≥ 4. Suppose that q = 0; i.e., the coordinates of u and v differ in all d dimensions.

i) For the 0th coordinate, trace a shortest path P ′(0), of length min(|u0-v0|, j-|u0-v0| ), from u to

(ud-1, … , v0). By induction, the Cj
d-1 prescribed by setting the 0th coordinate to v0 contains a path P ″(0)

from (ud-1, … , v0) to v, and this path traverses i-min(|u0-v0|, j-|u0-v0| ) edges. Catenating P ′(0) with P ″(0)
gives an i-edge path P(0) from u to v. For h = 1, …d-1, iterate this process to synthesize path P(h): at the
start of the hth iteration rotate each coordinate value by adding it to h, and converting the sum to its princi-
pal value mod d. As illustrated by the righthand side of Table 9, this completes a symmetric permutation
matrix for the cyclic group of order d [Artin 1975] (VII:1.4). At h = 2, for example, coordinates along the
path change in the order 2, …,d-1, 0, 1. With respect to any vertex along a path, define the stage to be the
number m of different coordinates that have changed; q = 0 implies 0≤ m ≤ d-1. Entry (h, m) of the permu-
tation matrix equals (h+m) mod d. Consider any two paths P(h1) and P(h2), for any stage m < d-1. Since
entries 0 through m of any row map to successive elements of the cyclic group of order d, at least one of the
values in columns 0 through m of row h1 (resp. h2) must not be in columns 0 through m of row h2 (resp.
h2). But this means that, through stage m, the set of coordinates of P(h1) that are unchanged from their
original values in u differ from the coordinates of P(h2) that are unchanged from their original values in u.
Thus, the only possible intersection of P(h1) and P(h2) is at stage d-1. But this is also impossible: the

(h1 + d-1 modd-1)th coordinate in P(h1) increments, in a monotone fashion modulo d-1, toward the coor-
dinate value of v in that dimension, while the remaining paths have already attained the coordinate value of
v in that dimension. Therefore, any path so constructed is interior-disjoint with any other.

iii) Continuing the case for q = 0, construct an additional d paths by substituting a swingback at the 0th

stage of the preceding procedure. For stages 0 through d-1, that is, begin by tracing a path P ′(d-1+h) of
length max( |uh-vh|, j-|uh-vh| ) from u to (ud-1, … , vh±1 mod j, … , u0); if max(|uh-vh|, j-|uh-vh|) = j-|uh-vh|
then the zeroth stage path stops at vh +1 mod j; otherwise it stops at vh -1 mod j.

This construction results in a swingback path P(h) passing through a neighbor of v, with the hth coordinate
equal to vh±1. As illustrated by the bottom three rows of Table 9, the final step in the path traverses an edge
to v. Note that the total length of P(h) is i+j- 2|uh-vh| if min( |uh-vh|, j-|uh-vh|) = |uh-vh|; otherwise,
min(|uh-vh|, j-|uh-vh|) = j-|uh-vh| and the path length is i-j+ 2|uh-vh|. In any case, sorting the swingback

paths by their lengths yields a set of d-q = d-0 = d paths P(d) … P(2d-1), with P(d+r) traversing i+2cr
+- j

edges, and 0≤ r ≤ d-q-1 = d-1.

By an argument similar to that pertaining to paths without swingback, any path with swingback intersects
no other path (with or without swingback), at least up to the next-to-last edge in the path. As remarked pre-
viously, the next-to-last edge advances to a unique neighbor of v (i.e., one which has not been traversed by
any other path, with or without swingback). For q = 0, that is, any two paths constructed in steps (i) or (iii)
are interior-disjoint.

Now suppose that the integer q is positive. With u as source and v as destination, inductively apply the pre-
ceding procedure for q = 0 to the d-q coordinates not shared by u and v. i) The Cj

d-1 prescribed by the q
coordinates whose values are the same in u and v contains 2(d-q) pairwise interior-disjoint u-v paths, d-q of
which traverse i edges.

ii) Construct 2q bypass paths as follows. If k is the index of a coordinate such that uk = vk, then traverse to

a neighbor of u by crossing one edge in the kth dimension; i.e., by incrementing or decrementing uk. From

this neighbor construct a path to the neighbor of v obtained by incrementing resp. decrementing the kth

coordinate of v. From u’s neighbor to v’s neighbor, a single path of length i is guaranteed by applying the
procedure for q = 0 to the d-q coordinates not shared by u and v. Traversing from v’s neighbor to v com-
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pletes a path of length i+ 2. For each such k we obtain two paths (one by incrementing uk and the other by

decrementing uk), with the kth coordinate unique for every path so constructed. As a result, any bypass path
is interior-disjoint with any other bypass path, as well as with any of the 2(d-q) paths (with or without
swingback) whose vertex labels vary only in the coordinates not shared by u and v. The bypass procedure
constructs 2q paths P(d-q) … P(d+q-1) between u and v; each bypass path traverses i+2 edges.

iii) By induction, the Cj
d-1 prescribed by the q coordinates whose values are the same in u and v contains

d-q paths P(d+q) … P(2d-1), pairwise interior-disjoint among themselves as well as with those con-
structed in steps (i) and (ii). Path P(d+q+r) traverses i+2cr

+- j edges. The theorem holds for d > 1. ❒

Corollary 4.1. Cj
d is 2d-connected, and guarantees a quorum in the presence of any 2d-1 faults. 

Let us use our results to formulate upper bounds on quorum diameter at i = 0, 1, … 2d-1 = f faults. Since
i = 0 is covered by Corollary 1.1, we focus on 1≤ i ≤ d-1. Although q may assume any value in the range 0
to d-1, the distances of Theorem 3 attain a maximum only if q = 0; i.e., for paths constructed according to
procedure (i). To see this, and without loss of generality, note that any two opposites attain the diameter
d⋅ j / 2  with i = 0. By contrast, the source and destination of a type (ii) bypass path must be identical in at
least one of the coordinates. Therefore, any path constructed according to procedure (ii) has length at most
(d-1)⋅ j / 2 + 2 ≤ d⋅ j / 2 , where the latter follows since j ≥ 5. For values 1≤ i ≤ d-1, where paths of type
(i) or type (ii) apply, it is the type (i) paths which realize the greatest number d⋅ j / 2  of edges.

For a number i of faults in the range d ≤ i ≤ 2d-1, consider the length of paths constructed by procedure
(iii), with q = 0. For 0≤ r ≤ d-q-1, define cr as the value j - cr

+; that is, cr is the (r+1)st greatest addend in

<u, v>, the distance (7). Sincec0
+ ≤ … ≤ cr

+ ≤ … ≤ cd-1
+, it follows that c0 ≥ … ≥ cr ≥ … ≥ cd-1 (29)

Writing <P> for the length of path P, express the length of the paths constructed by step (iii) as:

(30)

Consistent with (29), and by the remark preceding Corollary 1.1, the righthand side of (30) is at most

rc0 + ( j - cr) + (d - r - 1)cr+ 1 ≤ r  j / 2 + ( j - cr ) + (d - r - 1)cr+ 1 (31)

If r < d - 1 then the righthand side of (31) is bounded from above by

r  j / 2 + (d - r - 2)cr ≤ (d - 1) j /2 +  j /2 (32)

Number i of vertices 
deleted, 0≤≤≤≤ i ≤≤≤≤ f
f = 2⋅⋅⋅⋅[logj n] - 1

Radius Diameter

At least At most At least At most

0
 j / 2⋅logj n

Corollary 1.1

from 1
to [logj n ] - 1

if j is odd
then ½⋅( j-1)⋅logj n

else ½⋅j ⋅[logj n]-1
    Theorem 3

 j / 2⋅logj n
Theorem 2, Corollary 4.2

from [logj n ]
to 2⋅[logj n ] -2

 j / 2⋅([logj n]-1)+ j / 2
 Corollary 4.2  j / 2⋅logj n

Theorem 2

 j / 2⋅([logj n]-1)+ j / 2
 Corollary 4.2

2⋅[logj n ] -1
 j / 2⋅(logj n)+ j / 2−1

Corollary 4.2
 j / 2⋅(logj n)+ j / 2−1

 Corollary 4.2

Table 10: Detailed properties of quorums induced by deleting vertices from C-cubes Cj
d, j ≥ 5, d ≥ 2.
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If r = d - 1 then the righthand side of (31) is at most(d - 1) j / 2 + j - cd-1 ≤ (d - 1) j / 2 + j - 1 (33)

To complete our analysis of these paths, note that the righthand side of (32) is achieved between any verti-
ces u and v, all d of whose coordinates differ by an absolute value of  j / 2  or j-  j / 2 ; for illustration:
u = 0, v = (  j / 2 , …,  j / 2). Further, the righthand side of (33) is achieved between any vertices u and v,
d-1 of whose coordinates differ by an absolute value of  j / 2  or j-  j / 2 , and one of whose coordinates dif-
fers by ±1; for illustration: u = 0, v = (  j / 2 , …,  j / 2 , 1). Furthermore, and by remarks following
Corollary 4.1, these pathlengths exceed those of paths constructed by procedure (ii). In summary:

Corollary 4.2. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5, d ≥ 2.

If i ≤ d-1 then the diameter of H is at most d⋅ j / 2 . If d ≤ i ≤ 2d-2 then the diameter of H is at most
(d - 1) j / 2 +  j / 2. If i = 2d - 1 then the diameter of H is at most d⋅ j / 2 +  j / 2 - 1. 

4.4  High Fidelity Results for Quorum Radius and Diameter

The classes * listed in Table 7 are characterized in terms of the maximum quorum radius ρ, as taken over
all fault patterns on i =  0, 1, … f faults. We frame a more accurate picture of performability (equivalently,
of performance degradation) by explicating the radius or diameter for each such i. Table 10 frames such a
picture in the case of C-cubes, with i increasing as we move down the lefthand column. The solid red
curves of Figure 21 plot decreasing performability (i.e., increasing latency, as measured by radius) for a
6-dimensional 5-ary C-cube. This section tabulates results analogous to those of Table 10 for: K-cubes
(Table 11), K-cube-connected cycles (Tables 12 and 13), K-cube-connected edges (Table 14), and stars,
cycles, and cliques (Table 15). These results lay a solid foundation for performability, a foundation that is
readily built upon simulations carried out with STAArchitecture.62

We augment Sections 4.1 through 4.3 with sufficient development to enable interpretation of Tables 11
through 15. Let us begin by reviewing constraints on the constructibility of K-cubes. By step (i) on

Radix j 
of

K-cube

Number i 
of vertices deleted, 

0 ≤≤≤≤ i ≤≤≤≤ f
f = [(j-1)⋅⋅⋅⋅logj n] -1

Radius Diameter Number i 
of vertices deleted, 

0 ≤≤≤≤ i ≤≤≤≤ f
f = [(j-1)⋅⋅⋅⋅logj n] -1

At least At most At least At most

2

0 log2 n
Theorem 7 log2 n

Theorems 9, 10
from 0

to [log2 n] - 2from 1
to [log2 n]- 2 [log2 n] - 1

Theorem 11

[log2 n]
Theorem 9

[log2 n] - 1 [log2 n] + 1
Theorem 9

log2 n
Theorem 10

[log2 n] + 1
Theorem 9 [log2 n] - 1

≥ 3

from 0
to [logj n] -1

logj n
Theorems 8, 11

logj n
Theorems 8, 10

from 0
to [logj n] - 1

from [logj n]
to [(j-1)⋅logj n] - 1

logj n
Theorem 11

[logj n] + 1
Theorem 8

logj n
Theorem 10

 [logj n] + 1
Theorem 8

from [logj n]
to [(j-1)⋅logj n] - 1

Table 11: Detailed properties of quorums induced by deleting vertices of d-dimensional j-ary K-cubes Kj
d. Kj

d 
is constructible if and only if the maximum number of faults f equals [(j-1)⋅logj n] -1 and d = logj n.

62. The exposition of Sections 4.3 and 4.5 represents fresh mathematics obtained under, and for, this Phase I NIAC
effort. Though applied to our STAArchitecture software, results tabulated in Section 4.4 (citations in blue from
[LaForge 1999 JPL D-16485]) were derived as part of research sponsored by a 1998 NASA/ASEE Fellowship.
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page 34, Kj
d contains j copies of Kj

d-1; therefore the order nK(d, j) of Kj
d equals j⋅nK(d-1, j). Subject to the

initial condition nK(0, j) = 1, verify that the unique solution of this recurrence relation isnK(d, j) = j d (34)

By step (ii) on page 34, the degree of a vertex in Kj
d equals its degree in Kj

d-1 plus j-1, the number of edges

that connect it to vertices with the same labels in the other copies of Kj
d-1. Subject to the initial condition of

zero edges in Kj
0, the degree of each vertex in Kj

d is therefore d(j-1) (35)

Summing (35) over all j d vertices counts every edge twice. Hence the size eK(d, j) of Kj
d is

eK(d, j) = ½⋅d(j-1)⋅j d (36)

As a function of the number of faults present, Table 11 delineates bounds on the quorum radius and diam-
eter of quorums induced from K-cubes. Given the asymptotic optimality of K-cubes (Table 7, Sections 4.2,
4.3, and 4.5), we would like to be able to furnish the designer a wider range of n and f, while maintaining
the essential benefits. K-cube-connected cycles and edges serve this purpose.

A d-dimensional j-ary K-cube-connected cycle of order n, denoted Kj
d(n), is the result of replacing each of

the j d vertices of Kj
d with n mod j d cycles, each of which contains n/j d vertices, along with

j d - n mod j d cycles, each of which contains n/j d vertices. Refer to Figure 28. For a basis, a zero-dimen-

Underlying
K-cube
Kj

d(n)

Number i 
of vertices

deleted

Diameter, as a function of the number i of vertices
deleted, 0≤ i ≤ f = 1 + (j-1)⋅logj (n/m)

At least At most

radix j = 2,

dimension
d = log2 (n/m) = 1

number of
vertices

n = 2m+1 odd

0 1 + m/2 , equality by Equation (22), Theorem 15

1
1 + m/2

Theorem 15

2 + m/2
Theorem 14

2
m+1

Theorem 14

radix j = 2,

dimension
d = log2 (n/m)

number of
vertices n = m⋅2d

0 m/2 + log2 (n/m), equality by Equation (22)

from 1 to
[log2 (n/m)] - 1

m/2 + log2 (n/m)
Theorem 15

max(2, m/2 ) + max[2, log2 (n/m)]
Theorem 13

log2 (n/m) 1 + m/2 + log2 (n/m)
Theorem 13

1 + log2 (n/m)
m -1 + log2 (n/m)

Theorem 13

radix j ≥ 3,

dimension
d = logj (n/m)

number of
vertices n = m⋅j d

0 m/2 + logj (n/m), equality by Equation (22)

from 1 to
logj (n/m)

m/2 + logj (n/m)
Theorem 15

max(2, m/2 ) + max[2, logj (n/m)]
Theorem 12

from 1+ logj (n/m)
to (j-1)⋅logj (n/m)

1 + m/2 + logj (n/m)
Theorem 12

1 + (j- 1)⋅logj (n/m)
m - 1 + logj (n/m)

Theorem 12

Table 12: Diameter of quorums induced from d-dimensional j-ary K-cube-connected cycles Kj
d(n).
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sional K-cube-connected cycle Kj
0(n) is a cycle with vertices labeled from 0 to n/j 0 - 1 (i.e., from 0 to

n-1). The high order d digits of the label on a vertex u in cycle h of Kj
d(n) are identical to the d digits on the

label of vertex h of the corresponding Kj
d. The low order digit on u is its label in the corresponding Kj

0(n).
Vertex u shares an edge with vertex v if and only if i)u and v are neighbors in a basic cycle Kj

0(n); or ii) the
low order digits of u and v are identical, and the high order digits differ in exactly one position, or iii) there

Underlying
K-cube
Kj

d(n)

Number i 
of vertices

deleted

Radius, as a function of the number i of vertices
deleted, 0≤ i ≤ f = 1 + (j-1)⋅logj (n/m)

Number i 
of vertices

deletedAt least At most

radix j = 2,
dimension

d = 1
= log2 (n/m)

number of
vertices

n = 2m even

0,
1 (if m is odd)

1 + m/2
equality by Equation (22), Theorems 17 and 21

0,
1 (if m is odd)

1 (if m is even),
2

m/2
Theorem 17

1 + m/2
Theorem 21

1 (if m even),
2

radix j = 2,
dimension

d = 1
= log2 (n/m)

number of
vertices

n = 2m+1 odd

0,
1 (if m is odd)

if m = 2 then 1; else 1+ m/2
equality for m > 2 by Theorems 18 and 22

0, 1 (if m is odd)
2 (if m = 2)

1 (if m is even),
2

m/2
Theorem 18

1 + m/2
Theorem 22 1 (if m even)

1 + (m+1)/2
Theorem 22 2 (if m > 2)

radix j = 2,

dimension d
= log2 (n/m)≥ 2

number of
vertices n = m⋅2d

0,
1 (if m is odd)

m/2 + log2 (n/m)
equality by Equation (22), Theorems 17 and 20

0,
1 (if m is odd)

1 (if m is even),
from 2 to

1 + log2 (n/m)

m/2 - 1 + log2 (n/m)
Theorem 17

m/2 + log2 (n/m)
1 (if m is even),

from 2 to
[log2 (n/m)] - 2

max(2, m/2 )
+ log2 (n/m)
Theorem 20

[log2 (n/m)] - 1

1 + m/2 + log2 (n/m)
Theorem 20

log2 (n/m),
1 + log2 (n/m)

radix j ≥ 3

dimension
d = logj (n/m)

number of
vertices n = m⋅j d

from 0 to
[logj (n/m)] - 1

m/2 + logj (n/m)
equality by Equation (22), Theorems 16 and 19

from 0 to
[logj (n/m)] - 1

from logj (n/m) to
[(j-1)⋅logj (n/m)] - 1

m/2 + logj (n/m)
Theorem 16

if d = logj (n/m) = 1
then 1+ m/2
else max(2, m/2 )

 + logj (n/m)
    Theorems 19 and 27

logj (n/m)

(j-1)⋅logj (n/m),
1 + (j- 1)⋅logj (n/m)

(m odd)
if d = logj (n/m) = 1
then 1+ m/2
else 1+ m/2

         + logj (n/m)
    Theorems 19 and 27

from
1 + logj (n/m)

to
1 + (j- 1)⋅logj (n/m)

(j-1)⋅logj (n/m),
1 + (j- 1)⋅logj (n/m)

(m even)

m/2 - 1 + logj (n/m)
Theorem 16

Table 13: Radius of quorums induced from d-dimensional j-ary K-cube-connected cycles Kj
d(n).
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are n/j d vertices in the basic cycle of which u is a member, n / j d vertices in the basic cycle of which v
is a member, and u and v have the highest labels in their respective basic cycles.

Since each basic cycle must contain at least three vertices, it follows that              n/3 ≥ j d (37)

is a constraint on the number of vertices in any Kj
d(n). If 0 = n mod j d then n = m⋅j d for some positive inte-

ger m. Since it contains exactly m vertices per basic cycle, we denote such a Kj
d(m⋅j d) by  Km⋅j

d.

Each vertex of Km⋅j
d has degree d(j-1)+2 = f+1 (38)

Summing the degree of every vertex counts each edge twice, hence

eK(d, j, n) = ½⋅m⋅j d⋅(d[ j-1] + 2) = ½⋅m⋅d⋅j d[ j-1]+m⋅j d           (for n = m⋅j d) (39)

Since either j or j-1 is even, the first term on the righthand side of (39) is an integer; (39) is therefore an
integer. Substituting d(j-1)+2 = f+1, we see that (39) equals n(f+1)/2. Thus 0 = n mod j d implies that

the number of edges in Km⋅j
d is exactly that of any minimum size (f+1)-connected graph on m⋅j d vertices.

Suppose on the other hand that 0 ≠ n mod j d. By step (iii) above, we connect the vertex with the highest
label in each of the n mod j d long cycles to the vertex with the highest label in each of the j d - n mod j d

short cycles; moreover, we count these (n mod j d)(j d - n mod j d) “extra” edges only at d=1.

Summing the degree of each vertex counts each edge twice. The number of edges in Kj
d(n) is therefore

eK(d, j, n) = ½⋅[ n⋅(d[ j-1]+2) + (n mod j d )(j d - n mod j d)] (40)

Substituting d(j-1)+2 = f+1, we see that (40) equals ½⋅[ n(f+1) + (n mod j d )(j d - n mod j d)] . That is,
Kj

d(n) has minimum size n(f+1)/2 if and only if

either        a)    0 = n mod j d        or       b)    j = 2, d = 1, f = 2, n odd (41)

By comparison to K-cubes, our K-cube-connected cycles must satisfy three constraints: (37), (38), and
(41). Despite this, a (d-2)-dimensional K-cube-connected cycle may be constructible where the corre-
sponding d-dimensional K-cube is not. Note that (41) says quite a bit about the structure of K-cube-con-
nected cycles Kj

d(n) of size n(f+1) /2 : either Kj
d(n) is a Km⋅j

d, or, for all n and f = 2, Kj
d(n) = K2

1(n)
comprises two cycles, one with n/2 vertices, the other consisting ofn/2 vertices. The latter holds since
if n is not odd then 2 divides n; in this case (41a) is satisfied, and we have a Km⋅2

1. In particular, the size of
any one-dimensional binary K-cube-connected cycle is the same as that 3n/2  of a 3-connected graph
with fewest edges. Note that our definition of a K-cube-connected cycle is somewhat different from that

Figure 28: A K-cube-connected cycle Kj
d(n) has minimum size if and only if (41a) or (41b) holds.
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described by [Preparata and Vallemin 1981] and analyzed by [Banerjee et al 1986]. Elsewhere in this
report we write m in place of the integer value n/j d , the least number of vertices in a cycle. As a func-
tion of the number of faults present, Tables 12 and 13 delineate bounds on the quorum diameter resp.
radius of quorums induced from K-cube-connected cycles.

The structure of a K-cube-connected edge lies between that of K-cubes and K-cube-connected cycles.
Refer to Figures 2 and 29. A d-dimensional j-ary K-cube-connected edge of order n, denoted K2⋅j

d, is the
result of replacing each of the j d vertices of Kj

d with an edge. For a basis, a zero-dimensional K-cube-con-
nected edge K2⋅j

0 is an edge connecting two vertices. The high order d digits of the label on a vertex u in
edge h of K2⋅j

d are identical to the d digits on the label of vertex h of the corresponding Kj
d. The low order

digit on u is its label in the corresponding K2⋅j
0. Vertex u shares an edge with vertex v if and only if i)u and

v are neighbors in a basic edge K2⋅j
0, or ii) the low order digits of u and v are identical, and the high order

digits differ in exactly one position. This definition gives rise to a development analogous to that for
K-cube-connected edges. For example, the respective counterparts to (37) and (38) are

n/2 = j d (42)

and d(j-1)+1 = f+1 (43)

On the other hand, (41) pertains intact. Except for the case n = 5, therefore, a K-cube-connected graph with
given connectivity and minimum size cannot have as its basis a mixture of edges and cycles. It is for this
reason that we have equality in (42). As a function of the number of faults present, Table 14 delineates
bounds on the quorum radius and diameter of quorums induced from K-cube-connected edges.

To conclude this section, Table 15 details the unique minimum size graphs with minimum quorum radius
and diameter, at the minimum (f = 0, 1) and maximum (f = n-2, n-1) endpoints of fault tolerance. We
defined a clique Kn on page 33; a star Sn is a tree having a single central vertex; a cycle Cn is a path whose
endpoints are joined by an edge. Table 15 implies the results listed in Table 7, at f = 0, 1,n-2, andn-1.

Figure 29: K-cube-connected edge K2⋅j
d, radix j = 3. At j = 2, K2⋅2

d reduces to a binary K-cube K2
d+1.

Number i of vertices 
deleted, 0≤≤≤≤ i ≤≤≤≤ f

f = (j-1)⋅⋅⋅⋅logj (n/2)

Radius Diameter

At least At most At least At most

from 0
to logj (n/2)

1 + logj (n/2)
Theorems 23 and 25

1 + logj (n/2)
Theorems 23 and 24

from 1 + logj (n/2)
to (j-1)⋅logj (n/2)

1 + logj (n/2)
Theorem 23

if d = logj (n/2) = 1
then 2
else 2 + logj (n/2)
    Theorems 23 and 27

1 + logj (n/2)
Theorem 24

2 + logj (n/2)
Theorem 23

Table 14: Properties of quorums induced by deleting vertices from K-cube-connected edges K2⋅j
d, j ≥ 3.

K2⋅3
1 = K3⋅2

1

edge count = 9,
minimum size

10 00

20

3-connected graph 11
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maximum radius of quorum

minimized at 2



4.5. Large Scale Architectures Emerging Properties of Performability

Self-Healing Autonomous Spacecraft 48 NIAC Phase I Report, Revision 28-Feb-2000

4.5  Performability of Large Scale Architectures

Complementing Table 7, Tables 10 through 15 provide a taxonomy that includes, at the minimum and
maximum fault tolerance, minimum size graph architectures (stars, cycles, and cliques) with minimum
latency. This section addresses the theoretical optimality of K-cubes, K-cube-connected edges, K-cube-
connected cycles, and C-cubes. To preview: in a ratioed asymptotic sense, K-cube constructions can
deliver the best possible value Θ(log n) of ρ(n, f); i.e., a quorum radius that, within a constant factor (per-
haps equal to one) matches the lower bounds ρ–

Thm 6 of inequality (1). Moreover, K-cubes and their rela-
tives are preferred to C-cubes for two reasons: 1) the radius of a C-cube quorum exceeds the diameter of
the comparable K-cube having identical fault tolerance; 2) there is no relation between j and d such that, as
nC = j d → ∞, the ratio of the C-cube quorum radius to ρ–

Thm 6, does not diverge; i.e., this ratio must
approach infinity. With respect to both criteria, that is, C-cubes are sub-optimal.

For real x, the sign of x is indicated by the function signum(x). If x > 0 then signum(x) = 1; if x < 0 then

signum(x) = -1; if x = 0 then signum(x) = 0. Refer to Table 7. The signum function allows us to

conveniently encapsulate the fault tolerance of Km⋅j
d as f = ( j-1)⋅d + signum(m-2) (44)

Theorem 5. Denote by ρ-
Thm 6 the lower bound on the radius of any quorum, as given by inequality (1). 

      If    ρ–
m, j, d= log j (n/m) + m/2      and      ρ+

m, j, d= 1 + log j (n/m) + m/2 (45)

are the minimum  resp. maximum radius of quorums of Km⋅j
d, as listed in Table 7, then

 (46)

Proof. Explicate ρ–
m, j, d, ρ+

m, j, d, and ρ-
Thm 6, the latter without the ceiling function. Making use of (44),

substitute j = 1 + [ f - signum(m-2)] /d. For the lower bound invoke the inequalities -1≤ signum(m-2),

n(f - 1)+3 ≤ nf, and ln[(f- 1)/(f + 2)] < 0. For the upper bound observe that signum(m-2) ≤ 1,

(j-1)d+2 ≤ jd, and -1.4 < ln[(f - 1)/(f + 2)] . The result follows by algebraic manipulation. ❒

Fault tolerance
f

*+
n,f,k: (f+1)-connected 

graphs of minimum size 
n(f+1)/2, induced quo-
rums have radii at most k

Radius of quorum and of 
tree spanning quorum, as 
a function of the number 
i ≤ f of vertices deleted

Diameter of tree span-
ning quorum, as a

function of the number 
i ≤ f of vertices deleted

References

0
Best possible * 

n,0,1
uniquely the set of
n-vertex stars Sn

1 2 Figure 4
Theorem 3

1
Best possible * 

n,1,n/2
uniquely the set of
n-vertex cycles Cn

n/2 if i = 0

n/2 - 1 otherwise

n - 1 if i = 0

n - 2 otherwise

Figure 5
Theorem 4

n - 2
Best possible * 

n,n-2,1 
uniquely the set of
n-vertex cliques Kn

1
1 if i = f

2 otherwise

Figure 6
Theorem 5

n - 1
Best possible * 

n,n-1,1 
uniquely the set of
n-vertex cliques Kn

0 if i = f

1 otherwise

0 if i = f
1 if i = f - 1
2 otherwise

Discussion
following
Theorem 5

Table 15: Characteristics of quorums at either end of the range of the fault tolerance f < n, n≥ 3.

d m
2
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d m

2
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It is interesting to note that, in the large, the fault tolerance (44) of Km⋅j
d is dominated by j and d, and grows

in a fashion that is independent of m. By contrast, the radius of Km⋅j
d is dominated by m and d, and is inde-

pendent of j. Our conclusions about the optimality of the quorum radius of Km⋅j
d depend on how m, j, and d

tend to infinity. If the left and right sides of (46) tend to some limit λ then, in the large, ρ–
m, j, d, ρ+

m, j, d,

and ρ–
Thm 6 are within a factor λ of ρ(m⋅j d, (j-1)⋅d + signum[m-2] ), the minimum value (over all graphs)

of the maximum quorum radius. Abbreviating the latter quantity as ρ m, j, d, we obtain the following result.

Corollary 5.1.  For all nK = m⋅j d ≥ k, if q and r are least upper bounds

such that  and , then .

Under the conditions of Corollary 5.1, that is, the maximum quorum radius of Km⋅j
d approaches a value

that is within a factor 1+ q + qr + r  of the minimum. Several special cases of Corollary 5.1 are of particu-
lar interest: a)  d ∈ o(j); b)  m ∈ o(d); c) both (a) and (b). In this instance the maximum radius of quorums
induced from Km⋅j

d is asymptotically within a factor a)  1 +q, b) 1 + r , or c) 1 of ρ m, j, d.

If both m and d are bounded then the only way for the number of vertices to approach infinity is for the
radix j to increase. In this case we can improve Corollary 5.1 to best possible.

Corollary 5.2. If d, m ∈ Θ(1) then .

In the ratioed asymptotic sense of Corollaries 5.1 and 5.2, both the lower bounds ρ–
Thm 6 of inequality (1)

and the quorum radius of Km⋅j
d are best possible. In other cases it may be that one of these bounds is best

possible, but this remains to be proved. We also stress that ρ+
m, j, d / ρ-

Thm 6 and ρ-
m, j, d / ρ−

Thm 6 approach
one quite slowly. The reason for this appears to be the lnj factors in the expressions of (46). The 125-node

K-cube of Figure 21 illustrates a case where ρ+
m, j, d / ρ-

Thm 6 equals 2. As computed by STAArchitecture,
for example, at (n, f) = (121, 19) and (n, f) = (512, 20) we have (m, j, d)= (1, 11, 2) and

(m, j, d)= (1, 8, 3); the corresponding ratios ρ+
m, j, d / ρ-

Thm 6 are 3/2 and 4/3. 

Before presenting the last two theorems of this section, let us review our terminology. Refer to the two
middle columns of Table 7. By the maximum radius ρ(n, f) we mean the largest radius of any quorum
induced by f or fewer faults. Thus, for example, to obtain a lower bound on the maximum radius of a
K-cube (resp. C-cube), we take the largest of the lower bounds on radii as listed in Table 11 (resp.
Table 10); for an upper bound on the maximum radius of a K-cube or C-cube quorum, we take the largest
of the upper bounds on radii as listed in Table 11 resp. Table 10. Similarly, introduce the maximum diame-
ter ∆(n, f) as the largest diameter of any quorum induced by f or fewer faults. Thus, for example, to obtain
a lower bound on the maximum diameter of a K-cube (resp. C-cube) quorum, we take the largest of the
lower bounds on diameter as listed in Table 11 (resp. Table 10); for an upper bound on the maximum diam-
eter of a K-cube or C-cube, we take the largest of the upper bounds on diameter as listed in Table 11 resp.
Table 10. Finally, note that if f is the worst-case fault tolerance of an n-vertex graph architecture, then the
fractional fault (worst-case) tolerance is simply ffrac = f / n. With these notions in hand, we can quantify
relative merit of K-cubes and C-cubes.

Theorem 6. If the worst-case fault tolerance f of Kj
d equals that of CJ

D then, for j, J ≥ 5, d, D ≥ 2:

The maximum diameter ∆K of Kj
d is less than the maximum radius ρC  of CJ

D:∆K < ρC (47)

The order nK(j,d) of Kj
d is less than the order nC(J,D) of CJ

D: nK < nC (48)

m
2
---- 1+ qd≤ ln d r ln j≤ ρ m j d, ,

+ ρ m j d, ,( ) 1 q qr r+ + +( )⋅≤

lim nK ∞→
ρ m j d, ,

+

ρ m j d, ,
---------------

ρ m j d, ,
-

ρ m j d, ,
--------------- 1= =
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Proof. By hypothesis and Corollary 4.1: f + 1 = d(j - 1)  = 2D (49)
By Table 11: ∆K ≤ d + 1 (50)

By Table 10, and by inequalities (49) and (50): ½⋅D(J - 1) = ¼⋅d(j - 1)(J - 1) ≤ ρC (51)

For (47) it therefore suffices to show d + 1 < ¼⋅d( j - 1)(J - 1) (52)
But (52) holds since j, J ≥ 5, d, D ≥ 2, and 1 + 1/d ≤ 2 < 4≤ j - 1 (53)

Now note that, for integers r > q ≥ 5, we have r / q < 6 / 5 < 1.7 < 2 < 5½. Hence 5½⋅(q-1) /q < 5½⋅(r-1) /r  and

the value of j / 5½⋅(j-1) decreases strictly with increasing integer j ≥ 5. In particular, since 5 < 52 = 25, and

since J ≥ 5, d ≥ 2, we can make use of (49): nK = j d < 5½⋅d(j-1) ≤ J ½⋅d(j-1) = J D = nC (54)

Thus, (47) and (48) hold. ❒

Inequality (47) of Theorem 6 says that, for given fault tolerance, the maximum diameter of K-cube quo-
rums is less than the maximum radius of C-cube quorums. Moreover, (48) establishes that the worst-case
fractional fault tolerance of K-cubes is superior to that of C-cubes. Theorem 6 focuses on radices greater
than 4 and dimensions greater than 1 since, for j ≤ 4 or d = 1, C-cubes are isomorphic to K-cubes or
K-cube-connected cycles. But in how many cases can the fault tolerance of a C-cube equal that of a
K-cube? That is, for what constructions is the degree of each vertex in a K-cube equal to that f+1 of any
vertex in a C-cube? By inspection of (49), such a construction is realized if and only the degree of every
vertex of the K-cube is an even integer no less than eight. In other words, for j > 4 and d > 1, Theorem 6
applies to all C-cubes; moreover, Theorem 6 applies to a subset of K-cubes (loosely speaking, "half" of
them) that map many-to-one onto the set of C-cubes.

Despite Theorem 6’s quantitative preference for K-cubes over C-cubes, it seems plausible that, when
divided by ρ−

Thm 6, the maximum radius of C-cube quorums attains a limit, akin to that expressed by Cor-
ollaries 5.1 and 5.2. That is, we still do not know whether, for some scaling of j and d, the maximum radius
of quorums induced from Cj

d is asymptotically within a constant factor of ρ−
Thm 6. Alas, such scalability is

impossible, as the next theorem shows.

Theorem 7. As nC(j, d) = j d tends to infinity, the ratio ρC(j d, 2d-1) /ρ−
Thm 6  grows without bound.

Proof. Suppose to the contrary that ρC /ρ−
Thm 6∈ Θ(1). Then for some j, d, and k corresponding to all 

nC (j, d) ≥ k, the ratio is bounded from above by a least constant b ≥ 1. As with Theorem 5, we employ 

simplifying substitutions to consider  (55)

for such sufficiently large nC (j, d) ≥ k. The scaling condition n → ∞ implies that (j-1)⋅ln d → ∞ . Hence,
for the upper bound b to exist, the denominator on the lefthand side of (55) must approach infinity:
ln j → ∞. But this means that j → ∞. As j → ∞ , (j-1)/ ln j grows without bound; hence there can be no k

such that, for all nC (j, d) ≥ k, (55) is satisfied. That is, ρC(j d, 2d) /ρ−
Thm 6 grows without bound. ❒

Theorem 7 says that lower bounds ρ–
Thm 6 of inequality (1) (a variant on the Moore bound mentioned on

page 33) cannot be achieved by C-cubes, even in the sense of asymptotic ratios. This is not the same as a
wholesale assertion about the ratio of C-cube quorum radii to the optimum value of the maximum radius
ρ(n, f), and we are not in a position to advance such a claim. However, for scaling trends that enable
K-cubes to come within a constant factor of ρ(n, f), we can be certain that the ratio ρC /ρ(nC, f) diverges.
More precisely:

j 1–( ) ln d
ln j

------------------------- 2

j
2
--- d ln d

d ln j
---------------------------≤

2ρC
–

ρ Thm 6
–

--------------- 2b≤=



4.6. Diagnosis and Configuration STAArchitecture Simulates Distributed Algorithms

Self-Healing Autonomous Spacecraft 51 NIAC Phase I Report, Revision 28-Feb-2000

Corollary 7.1. For (j-1)d even, let j and d be the radix and dimension of the class of Kj
d such that d ∈ Θ(1)

or, with r the least upper bound such that, for all nC = j d ≥ k, ln d ≤ r ln j. Let {CJ
½(j-1)d = D} be the class

of C-cubes corresponding to such Kj
d ’s, as prescribed by the discussion following Theorem 6. If

nK (j, d) = j d tends to infinity then, by equation (48) of Theorem 6, nC tends to infinity; moreover, by

Theorem 7, the ratio ρC /ρ(nC, f) grows without bound.

4.6  STAArchitecture Simulates Distributed Algorithms for Diagnosis and Configuration

If quorums are to self-configure in accordance with criterion 4.1.1 then nodes must have a means of resolv-
ing which nodes are healthy. By contrast to configuration, results for mutual test and diagnosis (MTAD,
requirement3.8) are relatively well-established. Comparing Figure 9 to the algorithms of Figure 22, we
see than the demarcation between diagnosis and configuration is not necessarily sharp. In part because of
its simplicity, the second algorithm of Figure 22 readily generalizes to any graph architecture:

Generalized Diagnosis and Configuration Algorithm $connected % Configure a quorum from any
1) For each of ui’s neighbors j %  graph architecture. 
2) If test (ui , u j ) fails %    N.B. runs on ui .
3) then ui  disables its port to u j %  Local test is diagnosis

The correctness and efficiency of $connected, indeed any MTAD algorithm, boils down to:

i) What constitutes a test? ii) What is the local test coverage? iii) What are blocking constraints on tests?
iv) How does the efficacy of diagnosis and configuration vary with test redundancy and local coverage?

Suppose, for example, we build our system so that (ii) healthy nodes detect low-level faults in their neigh-
bors with test coverage approaching 100%. [Bianchini and Buskens 1992] and [Muraldi 1990] show how
we can effectively achieve this using (i) a combination of software and circuitry that exercises the point-to-
point connections and operating system or agent on each end. It follows that (iv) the minimum size of an
n-node graph architecture that is capable of diagnosing and configuring f faults equals the size n(f+1)/2
of an n-node graph architecture that is capable of forming an n-f node quorum (with diagnosis already per-
formed) in the presence of f faults [Preparata et al 1967]. In the worst case, that is, the optimum redun-
dancy for test and configuration equals the optimum redundancy for configuration alone. Recalling
requirement 3.6, if f is a constant fraction p of n then the discrete redundancy of combined diagnosis and
configuration is ½(n2p+n) ∈ Θ(n2), quadratic in n. Further, if each node has the power of (say) a linear
bounded automaton [Hopcroft and Ullman 1979], then we have more than ample resources to assure asyn-
chronous negotiation and execution of tests between each node and its neighbors. In this case the (serial-
ized) efficiency of $connected is at most the maximum degree of a node; i.e., f+1 = np+1 ∈ O(n) for
minimum size architectures with a constant proportion of faulty nodes. If (iii)  tests are pairwise exclusive
(i.e., each node is either being tested, testing, or idle) then the running time of any MTAD algorithm is
Ω(f+1) ∈ O(n); this bound which is achieved whenever the size of the smallest one-factorization is
O(f+1) ∈ O(n).63 A similar, holistic approach extends to other models of cost, benefits, and faults.

Let us revisit an issue first touched on in Sections 3.6 and 3.14: probabilistic models. A compelling reason
to consider almost sure diagnosis or configuration is that the cost or benefit (e.g., redundancy, algorithmic
complexity, fault tolerance) is usually better than in the worst case – by orders of magnitude.64 Refer to

63. A one-factorization is a covering by matchings, a special case of coverings by trees. The number of matchings in
a one-factor is at least the arboricity of the graph. See also footnote 55.
64. One notable exception is the case of arrays spared by rows and columns: here the probabilistic and worst-case
fault tolerance have the same order of magnitude [LaForge 1999 Trans. Reliability]. 
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Table 16. By contrast with the worst case, for example, suppose that we insist only that the probability of
configuring a quorum be close to one (i.e., ) in the presence of a constant proportion of indepen-
dent, identically distributed (iid) faults. In this case the price we pay for redundancy (size divided by order)
drops from Θ(n) to Θ(log n). Furthermore, and as summarized by the bottom row of Table 16, we can
decrease redundancy to a best possible constant Θ(1), as long as we insist that a quorum only contain
almost every healthy node. In addition to the features described in Sections 4.1 through 4.5:

4.6.1  STAArchitecture synthesizes self-configuring architectures that
a) tolerate a constant proportion of faults (req. 3.6)

b) maintain connectivity among healthy nodes, and that disconnect healthy from faulty nodes (req. 3.7);
c) identify faults via MTAD, mutual test and diagnosis (req. 3.8)

As Figures 30 through 32 illustrate, the proportion of faults that can we tolerate is as high as 85%.65 Build-
ing a multicomputer with this level of fault tolerance is both necessary and achievable for starship auton-
omy. The remainder of this section elaborates conditions under which we know this claim holds. We point
out open issues whose resolution will further enable self-healing architectures and algorithms, and further
relate these issues to the exposition of Sections 4.1 through 4.5.

Criteria for quorum 
inclusion

Probability that 
criteria are met

Distribution
of np faults

Behavior of faulty 
elements

Test
redundancy

100% accuracy
 [Preparata et al 1967]

[Hayes 1976]
1

anywhere
(worst case)

p < ½

malicious
(worst case)

100% accuracy
[Blough 1988]

[Scheinerman 1987]

iid
p < ½

malicious
(worst case)

100% of faulty
elements;

(1 - ε)⋅100%
of healthy elements
[LaForge et al 1993]

arbitrarily

small ε > 0 

iid
0 < p < 1

malicious
if p < 0.5

else faulty can 
agree

with probability
p⋅e-0.847/(1-p)

 
constant c

depends on ε

Table 16: Correctness and fault model versus redundancy for self-healing diagnosis and configuration.

65. This is considerably better than our Phase I target of 33% ([LaForge 1999 NIAC Phase I Proposal] Table 1)

Figure 30: Feasible regions of design for self-healing algorithms and architectures. 85% of nodes faulty.
Algorithm $connected combined with architecture G(h; 5, 5). Boundary chaos remains unexplained.
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To begin, the righthand column of the worst-case results of Table 16 pertains to a specific class of graph
architectures: the regular chordal graphs referenced on page 26 of Section 4.2.66 Although STAArchitec-
ture can synthesize these graphs for any n and f, the resulting latency is poor (cf. discussion, page 27). On
the other hand, our d-dimensional K-cube structures have low latency, but exhibit fault tolerance on the
order of j⋅log j n. Thus, while K-cubes represent an advance for performability (especially when compared
to C-cubes), the worst-case fault tolerance of K-cubes falls short of constant fractional fault tolerance:

4.6.2  It remains to characterize architectures satisfying 4.1.1, with f = np, in the worst case.

At the other end of the spectrum, the architectures G(h; s, t) referenced by Figures 30 through 32 deliver
fault tolerance in constant proportion to the number of nodes, and at constant redundancy (in this case, by
either count of edges or VLSI layout area [LaForge and Korver 2000 MTAD]). However, the probabilistic
radius or diameter of G appears to be on the order of the square root of n. We do not know how close (or
how far!) this latency is from optimal, and it remains to garner sharp results along these lines:

4.6.3  It remains to characterize architectures satisfying 4.1.1, with f = np, in the probabilistic case.

Finally, a caveat about the assumption that healthy nodes apply tests with 100% test coverage. Preliminary
simulations indicate that 4.6.1 remains valid when this condition is relaxed (e.g., the local coverage is
90%). However,

4.6.4  It remains to rigorously characterize MTAD with imperfect coverage for tests by healthy nodes.

Figure 31: Feasible regions of design for self-healing algorithms and architectures. 75% of nodes faulty.
Algorithm $connected combined with architecture G(h; 5, 5). Compare complexity with Figure 32.

Figure 32:  Quorum feasibility: diagnosis combined with configuration, 45% of nodes faulty.
Algorithm $connected combined with architecture G(h; 8, 8). h measures the discrete redundancy.

66. For diagnosis, we direct the edges of these chordal graphs, thus obtaining the digraphs of [Preparata et al 1967]. 
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5.  Starchart For a ProtoStar Multicomputer

How do we achieve starship multicomputers that satisfy the priorities of Table 3? To begin, we need to
refine our Starchart in a fashion that pinpoints, predicts, and promotes proper technologies, models, tools,
and processes. Let us elaborate the genesis of this Starchart. In modest detail, Section 3 identifies appro-
priate technologies for survivability (3.6); self-configuration (3.7, 3.8); and CAD (3.14). Section 3 also
recommends directions for process (3.13, 3.15, 3.16, and 3.17). Properly speaking, our Starchart should
also encompass key technologies for circuits. We illustrate with three examples.

Perhaps the best news for avionics is that it takes between 18 and 24 months to transform a commercially
available integrated circuit (IC) into a radiation-hardened version ([Lockheed Martin 1997], [Lockheed
Martin 1997 COTS], [Marshall 1999], [Marshall and Meyer 1999]). In consequence, starship avionics
should be able reap most of the speed and density, and some of the economic benefits, predicted by
Moore’s Law.67 Since commercial ICs are tracked and forecasted by the Semiconductor Research Associ-
ation’s Technology Roadmap ([Geppert 1999], [SRC 1998]), standardized radiation-hardening techniques
reduce (but do not totally eliminate, cf. 3.13) the labor required to compose and maintain our Starchart.

In the case of starships, will need to look beyond the decade-long timeframe that is the focus of the Road-
map. In addition to appropriate technologies, moreover, it is incumbent upon us to identify technologies
that may be inappropriate for use in starships. For example, the emerging field of molecular computing
offers promising prospects for economical yield and reliability ([Collier et al 1999], [Tech. Rev. 1999],
cf. 3.15). Within the next forty years, however, it does not appear that chemical computers will be ready to
execute programs at a level consistent with 3.1 through3.5.68

By directly involving commercial manufacturers in the standardization of a family of computational avion-
ics, we can ameliorate the premium we pay for space-qualified components. With respect to 3.7a and 3.7b,
for example, free-space optical interconnect appears be a very viable solution in the ten to fifteen year
timeframe. Refer to Figure 33. The advent of the VCSEL (Vertical Cavity Semiconductor Emitting Laser)
has given rise to demonstration photonics backplanes [Guilfoyle et al 1998], [Ishikawa and McArdle

67. This time we really mean Moore’s Law,12 though some question whether it will apply in twenty or even ten years
[Hamilton 1999], [Economist 1997], [Schaller 1997].

Figure 33: VCSEL: Vertical Cavity Semiconductor Emitting Laser.

68. Admittedly, it would be most satisfying to live to see our prediction proved wrong.
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1998], [Szymanski and Supmaonchai 1996]. As suggested in Section 3, VCSEL’s also go a long way
toward satisfying requirements 3.9 through 3.12. Recalling Figure 20, we can use VCSEL technology to
implement alternative architectures synthesized by STAArchitecture. Figure 1 depicts a design that we
hope to pursue for our Phase II effort: a prototype starship multicomputer we call ProtoStar.

Our Phase II Starchart will provide more than just a list of technologies, appropriate and inappropriate, for
use in the ProtoStar family of multicomputers. Perhaps more importantly, our Starchart will gestate high-
level requirements imposed by scientific, communication, and navigational aspects of interstellar missions
(cf. 3.5). Linking high-level avionics with low-level software, our Starchart will, for example, bracket
behavioral characteristics of workload (cf. p. 8) and starship instrumentation (cf. p. 9). For the latter, we
plan allocate a portion of Phase II resources to colleagues and students at Embry-Riddle Aeronautical Uni-
versity69 and at the University of Colorado. As to behavioral characteristics of workload, we are posed to
benefit synergistically from RoboComp: Roving Autonomous Astronomer on a Computer [LaForge 2000
RoboComp]. In collaboration with SoHaR and JPL, RoboComp is a distinct research proposal that focuses
on software for high-level autonomy (cf. 3.1, 3.5a).

Our Phase I effort establishes STAArchitecture version 0.5 as a vehicle that facilitates the application of
architectural knowledge. For Phase II, we view STAArchitecture as an integral tool in a suite of CAD soft-
ware that, in conjunction with our Starchart, enables the ProtoStar family of starship multicomputers. In
addition to items 4.6.2 through 4.6.4, we hope to have the opportunity to enhance STAArchitecture in sev-
eral directions; e.g., automated batch runs of statistically significant simulations, with faults in switches
and channels. Recalling the discussion on page 14, we also plan to incorporate a non-linear programming
model that balances process-level radiation hardening, shielding, and architectural level fault tolerance.

With particular emphasis on interstellar missions, we are pleased to present positive prospects for self-
healing architectures and algorithms. Presuming commensurate progress in the allied domains of Figure 3,
we project and propose a Phase II effort that advances serious development of a Starchart, of our STAAr-
chitecture software, and of the ProtoStar family of starship multicomputers exemplified in Figure 1.
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